铁路隧道工程中衬砌新工艺的应用论文

柴犬宝宝挂着呢 分享 时间: 收藏本文

【简介】感谢网友“柴犬宝宝挂着呢”参与投稿,以下文章小编为您整理的铁路隧道工程中衬砌新工艺的应用论文(共12篇),供大家阅读。

篇1:铁路隧道工程中衬砌新工艺的应用论文

铁路隧道工程中衬砌新工艺的应用论文

摘要本文总结了宝兰铁路客运专线隧道二衬施工中采用的新工艺,采用钢端模固定环向中埋式止水带施工工艺和固定工装固定矮边墙纵向中埋式止水带,解决了环向和纵向止水带线型弯曲、定位困难的问题,确保止水带不偏位、不变形;采用轨行式水沟电缆槽台车,起到控制水沟线形歪斜,提高施工工效等效果;采用自行式液压仰拱台车,实现了隧道仰拱快速、高效的施工,确保了隧道工程质量及安全。

关键词隧道施工;液压仰拱台车;水沟电缆槽;止水带固定工装

宝兰铁路客运专线隧道施工针对隧道二衬端头止水带易偏位变形、矮边墙中埋式止水带易跑位、仰拱圆弧面难以控制、水沟线形歪斜等易产生隐患或影响进度等关键环节,进行了隧道施工科技攻关研究,并在实际工程中采用了二衬台车钢端模、止水带固定工装、轨行式液压水沟电缆槽台车及自行式液压仰拱台车等工法和工装设备,取得了较好的效果。

1工程概况

宝鸡至兰州客运专线东起陕西省宝鸡市,自西宝客专宝鸡南站引出,沿渭河峡谷南岸向西,至甘肃省天水市麦积区新建天水南站,出站下穿c河及天水北山滑坡群,沿天f公路向西北方向至秦安县设站,出站沿天f公路西行,经通渭县、定西市至兰州市榆中县,穿越皋兰山、沈家岭后引入终点兰州西站。宝兰铁路客运专线BLZQ-2标,里程起讫范围为:DK655+448~DK683+620,全长28.172km。其中桥梁长1.08km,占线路的4%,隧道长27.055km,占线路的96%,整个标段以隧道为主,共有双线隧道6.5座,分别为5899延km的太宁隧道、7621延km的晁峪隧道、6306延km安平隧道、3731延km的林光村隧道、1706延km的南马棕山隧道及千家沟隧道、1735延km的牛背隧道(半)。隧道二衬采用模筑混凝土台车组织施工,仰拱采用仰拱台车组织施工。隧道防水要求达到一级防水标准,施工采用“防、排、堵、截结合,因地制宜,综合治理”的原则。隧道拱墙每环设置背贴式、中埋式钢边止水带,仰拱与拱墙交接处设置中埋式止水带、止水条。隧道两侧设纵向通长电力、电信、水沟电缆槽。

2新工艺的运用

2.1二衬台车钢端模

针对隧道二衬端头止水带易偏位变形及端部混凝土不平整的.问题,对二衬台车钢端模进行改造设计,二衬台车钢端模构造如图1所示,主要由二衬台车+固定钢模+活动钢模+内侧木模及顶托、工字钢固定后座等组成。钢端模分块尺寸、重量,及联接情况如下:钢端模由固定钢端模D2及活动钢端模D1组成,每块长度为402mm,重量分别为14.2Kg、11.9Kg;每块钢端模设计为L型结构,高度均为210mm,宽度分别为220mm、150mm(可根据设计止水带的位置进行适当调整)。隧道二衬台车钢端模技术的应用,很好的确保了二衬端部混凝土表面的平整、不变形;固定钢模及活动钢模很好的固定了环向止水带的位置,并保护止水带不受损伤。解决了隧道二衬施工端部不平整及止水带褶皱变形等问题,确保了隧道施工质量,效果显著。

2.2止水带固定工装

一般隧道施工中仰拱和拱墙分开浇筑,为确保仰拱与拱墙之间施工缝的防水性能,需在浇筑仰拱时沿纵向铺设中埋式止水带。传统的施工工艺一般存在纵向止水带定位困难、施工效率低、成型后止水带线型弯曲、止水效果差等问题。为解决这点问题,研究设计了纵向止水带固定工装的方法,其构造如图2所示。主要由定位销、U型定位钢筋、加密U型卡具、纵向角钢等部件组成。按矮边墙施工每工班施工长度,该工装纵向角钢长度设计为10~12m、定位销及U型钢筋每150~200cm设置一道。技术成果的应用,解决了纵向止水带线型弯曲、定位困难的问题。在矮边墙施工过程中,准确、稳固的对纵向止水带进行定位,确保隧道施工质量,取得良好效果。

2.3轨行式液压水沟电缆槽台车

2.3.1轨行式液压水沟电缆槽台车构造为满足电力、通信以及隧道排水等功能要求,需在轨道两侧设置水沟及电缆槽。为提高施工效率同时保证施工质量,采用轨行式液压水沟电缆槽台车,其构造如图3~4所示。主要由桁架支撑系统、行走系统、液压系统、模板系统等组成。台车长度为10~12m,每3m间隔设置4道桁架;行走系统采用轨行式,液压电气驱动;桁架两侧设置支撑梁,采用液压杆件连接模板系统;模板采用整体钢模,长度同台车长度。2.3.2轨行式液压水沟电缆槽台车优点和效果质量控制好:轨行式液压水沟电缆槽台车采用整体钢模设计,模板强度大、稳定性好,避免施工过程中出现“跑模”现象;并在钢模上设置附着式振动器,振动时间采用数控方式,确保了振动效果,避免出现蜂窝麻面、翻砂等现象。施工效率高:隧道水沟电缆槽传统施工方法采用小块模板进行拼装,整体性差,模板安装及加固支撑、模板拆除耗时较长,每循环施工模板采用人工倒运,施工效率低,每循环施工周期约3天。采用轨行式液压水沟电缆槽台车进行施工,台车拼装完成后,每次施工作业只需要安装钢轨,台车就位后,全自动进行操作,进行模板的就位,不需拼装和拆除模板,施工快捷,每循环施工周期1天。水沟电缆槽台车施工的水沟、电缆槽效果详如图5。

2.4自行式液压仰拱台车

2.4.1自行式液压仰拱台车构造根据相关要求,仰拱浇筑与仰拱填充要分开浇筑,且仰拱混凝土要一次性浇筑(即不留施工缝)。因仰拱中部弧度较小,坡度平衡,可不设模板;而两侧混凝土由于坡度较大,且需预留施工缝、安装止水带,需设置模板。浇筑时先采用自然摊铺的方法从中间向两边浇筑,浇至仰拱模板下沿时,改由仰拱两侧的顶部入模。根据上述浇筑方法,为保证浇筑质量,加快施工进度,采用自行式液压仰拱台车,该台车总体构造如图6,主要由纵向主梁、圆弧模板、行走系统及配重平台、液压系统、端头模板及支撑系组成,其中仰拱模板构造。2.4.2自行式液压仰拱台车的优点采用仰拱台车,确保仰拱与填充层分开浇筑,施工规范。施工效率高:传统的施工方法,仰拱每循环施工周期为4天,采用仰拱台车施工,每循环施工周期为2.5天。确保步距红线不超标:采用仰拱台车施工,每月的仰拱进尺可达到120~144m,与围岩开挖进尺相匹配,有力的保证了仰拱距离掌子面的距离不超标。现场施工实体效果图。

3结语

本文总结了在铁路隧道仰拱施工及水沟电缆槽等的施工过程中,系列新技术成果的成功应用,实现了隧道仰拱快速、高效的施工,确保了隧道工程质量及安全,无论在施工进度还是施工质量上均得到了很好的控制,取得了显著的经济效益;同时为隧道施工提供了工程实践参考。

参考文献

[1]肖广智.铁路隧道施工新技术[M].北京:人民交通出版社,

[2]柳其圣.液压仰拱台车在铁路隧道施工中的应用分析[J].铁道建筑技术,2016,4:115-117.

[3]周继涛,卢江华,张宁.自动液压成型台车在隧道水沟电缆槽施工中的应用[J].公路交通科技:应用技术版,2016,7:271-272.

[4]李彦乐.特长隧道水沟电缆槽整体移动模架施工技术[J].山西建筑,2016,43(7):191-193.

篇2:隧道工程衬砌的病害处治论文

0引言

近年来,随着我国交通行业的不断发展,不仅仅道路桥梁工程项目的建设数量不断增加,隧道工程作为其中较为关键的组成部分,同样也得到了较好构建,隧道工程项目的施工同样越来越常见,并且也确实在很多方面表现出了较为理想的通行能力,但是其施工复杂性和难度同样也比较高,需要围绕着隧道工程项目的施工流程进行严格把关。隧道工程项目中衬砌施工是比较重要的一点,应该详细把握衬砌施工操作的基本要点环节,对于可能出现的病害问题进行重点防控,提升其整体施工水平。

1隧道工程衬砌施工要点

隧道工程项目施工的难度比较大,其涉及到的水文、地质条件较为复杂,进而也就存在着较多的干扰因素,为了提升其整体施工水平,降低可能出现的各类隐患缺陷,必须要把握好隧道工程衬砌施工技术操作的各个基本环节,对于初期支护以及永久性支护的落实进行详细把关,提升其整体施工质量水平。

1.1隧道工程衬砌初期支护

对于隧道工程项目衬砌施工操作的有效落实,初期支护是比较重要的一点,其直接关系到后续隧道工程项目施工建设的连贯性和可靠性,能够有效规避可能出现的基本障碍缺陷。在这种隧道工程初期衬砌处理中,因为很可能遭遇软弱岩层结构,如此也就必然很可能会造成较为明显的威胁,需要制定较为可行的施工方案,确保初期支护较为可靠。在初期支护处理中,需要首先做好之后处理,然后再进行开挖操作,如此才能够有效规避可能出现的支护不及时问题,保障了后续开挖以及其它操作的可行性效果;在初期支护处理过程中,往往还需要重点加强对于爆破环节的严格把关,确保能够形成理想的标准化效果,实现弱爆破模式,有效降低可能出现的不良威胁,短进尺同样也是比较重要的一个基本要求,应该在支护处理中引起足够重视;对于初期支护操作的有效开展,往往还需要重点加强对于封闭方面的详细实时监管,尽量做好早封闭处理,如此也就能够有效解决可能存在的施工隐患,将隧道支护价值发挥到最大;在整个隧道工程初期支护处理过程中,往往还需要重点加强对于测量工作的高度重视,保障其测量能够较为及时准确,积极跟进隧道工程项目的初期支护,尽量确保施工操作得到较好协调,对于存在的问题进行及时修正。当然,对于这种隧道工程衬砌施工中的初期支护操作,其同样也需要借助于混凝土施工技术手段进行有效落实,这种混凝土施工技术手段的运用也就需要重点做好全过程严格控制,保障混凝土材料的选择和应用能够较为合理,并且能够在较大程度上表现出较为理想的作用效能,避免因为混凝土型号不匹配,或者是混凝土材料的质量存在问题而影响到最终的施工效果;对于后续混凝土材料的喷射处理,同样也需要借助于较为合理的机械设备进行有效处理,保障这些混凝土喷射机械设备的应用能够较为理想,满足于初期支护的基本要求,对于相关联的一些锚杆设备或者是格栅支架设备等,也需要进行详细全面监控,确保其能够形成理想的初期支护效果,对于密实度以及稳定性进行重点把关。

1.2隧道工程衬砌永久性支护

对于隧道工程衬砌施工操作的有效落实,永久性支护操作同样也需要重点把关,其关系到后续隧道工程项目的应用耐久性效果,需要在初期支护完成后,沉降以及收敛都达到稳定状态时进行的有效施工处理。在隧道工程隧道衬砌施工处理中,其需要首先把握好防水卷材的有效运用,确保防水卷材能够应用较为合理,保障混凝土材料具备较为稳定的挂靠基础条件,并且能够形成较为稳定的防水体系,规避可能出现的隐患缺陷;此外,对于隧道工程衬砌永久性施工处理,同样也需要把握好混凝土浇筑的规范性,确保混凝土材料的浇灌能够充分可靠,对于以往比较常见的混凝土质量缺陷,或者是混凝土浇筑不及时问题进行重点把关控制,促使其能够形成稳定施工效果;在混凝土浇筑处理过程中,对于压力的有效控制同样也是比较基本的一个条件,其需要确保混凝土材料在浇筑完成后,持续施压10分钟左右,保障其能够形成稳定结构,避免出现脱空问题;在永久性支护衬砌施工完成后,必须要重点加强对于检测环节的高度重视,应该保障隧道工程衬砌结构的厚度、脱空状况等得到较好分析,了解其是否能够满足于隧道工程项目的基本施工效果,对于可能存在的各类问题进行及时解决修正,保障衬砌结构的稳定性和可靠性。

篇3:隧道工程衬砌的病害处治论文

在隧道工程衬砌施工处理过程中,最为常见的`一类病害问题就是混凝土裂缝缺陷,混凝土施工材料作为当前隧道工程衬砌中最为核心的材料,其如果出现使用方面的故障偏差,必然会严重影响整体应用性能,由此带来的威胁也是比较突出的。隧道工程衬砌裂缝缺陷的出现主要就是表现为温度应力带来的收缩以及膨胀现象,进而也就极有可能会造成隧道工程衬砌结构中出现裂缝,影响其完整性和耐久性效果,最终必然也就能够形成较大安全隐患。结合这种隧道工程衬砌裂缝问题的产生,其需要重点围绕着整个施工流程进行全面规范控制,首先做好混凝土材料的审核把关,确保混凝土材料能够符合衬砌施工需求,各类原材料都能够较为合理可靠,避免应用劣质原材料进行施工处理,尤其是在水泥材料的选择方面,更是需要重点加强型号选择,保障水泥材料的水化热性能指标得到优化,如此也就能够对于后续温度应力形成较为理想的控制效果;此外,还需要重点加强对于混凝土材料配置方面的控制,避免各类原材料在添加数量方面出现偏差,尤其是对于水泥材料的应用量,必须要较为合理可靠,既能够满足于强度方面的基本要求,也能够避免较多水化热的出现,并且加强搅拌处理,充分提升其散热效果;对于混凝土材料的喷射处理,需要在衬砌施工中规范化把关,将衬砌目标进行全方位混凝土喷射,保障衬砌结构较为合理可靠,能够缓解隧道工程项目中存在的混凝土挂靠不稳定问题,提升其整体性效果;当然,在混凝土喷射完成后,也需要重点加强养护管理以及详细检测分析,了解其混凝土衬砌结构状态,对于存在的威胁问题进行及时协调,避免其形成较为明显的隧道隐患威胁。对于隧道工程衬砌中已经出现的裂缝问题,也需要采取同类型的混凝土材料进行增补处理,提升其完整性和强度。

3结束语

综上所述,对于隧道工程衬砌施工操作的有效落实,重点加强对于各个基本流程的关注和控制是必不可少的,尤其是对于初期支护以及永久性支护处理,更是需要进行严格把关,综合提升其混凝土材料应用价值,保障衬砌施工效果。

参考文献

[1]刘世元.隧道工程衬砌及病害处治研究[J].建材与装饰,,(19):272-273.

[2]华立辉.浅析隧道工程衬砌及病害处治[J].建筑知识,2016,(01):79-80.

[3]刘燕鹏,缑婷,田正,蔺虎平,李祥.公路隧道运营期衬砌病害分析及对策研究[J].公路,,(10):257-263.

[4]刘海京,郑佳艳,林志.公路隧道裂损病害快速加固及修复技术探讨[J].公路隧道,,(01):16-19.

[5]刘海京,郑佳艳,程崇国,黄伦海.大坂山隧道病害处治工程工艺设计与实证分析[J].重庆大学学报,,(12):138-143+150.

篇4:粉煤灰在柳林隧道衬砌施工中的应用

粉煤灰在柳林隧道衬砌施工中的应用

指出在衬砌混凝土工程中掺入适量的.粉煤灰,不但能大大改善混凝土拌合物的和易性,而且使混凝土的抗渗能力有很大提高,还可以提高混凝土的后期强度,介绍了粉煤灰混凝土应用于隧道衬砌中的工程实例,结果表明满足设计“不渗、不漏、不渍”的要求.

作 者:任云 吴森 REN Yun WU Sen  作者单位:中交隧道工程局有限公司,北京,100088 刊 名:山西建筑 英文刊名:SHANXI ARCHITECTURE 年,卷(期): 35(7) 分类号:U455 关键词:粉煤灰   隧道   和易性   抗渗性   防水等级   强度  

篇5:浅谈地质雷达在隧道衬砌检测中的应用

浅谈地质雷达在隧道衬砌检测中的应用

文章系统地介绍了地质雷达的.测试原理、数据处理方法,通过对隧道混凝土衬砌质量检测实例较好地说明了地质雷达对隧道进行无损探测具有较好的工作效果.

作 者:高文号 GAO Wen-hao  作者单位:安徽省港航勘测设计院,安徽,合肥,230011 刊 名:工程与建设 英文刊名:ENGINEERING AND CONSTRUCTION 年,卷(期):2009 23(2) 分类号:U455.91 U456.31 关键词:地质雷达   隧道   衬砌   检测  

篇6:音频大地电磁在铁路隧道工程勘察中的应用

音频大地电磁在铁路隧道工程勘察中的应用

对于长大深埋铁路隧道的工程地质勘察,音频大地电磁(AMT)已经成为目前最为行之有效的物探勘察手段之一.音频大地电磁(AMT)测深法利用天然电磁场信号为场源,观测天然电磁场的时间序列信号,然后将时间序列数据转化为频率域数据,进而计算出每个频点的电阻率值和相位阻抗.野外采集的时间序列原始数据,经过Robust处理和带地形的'二维反演,能真实反应地下的地质信息.通过近几年在青海某铁路隧道等工程的应用,取得了较好的效果.

作 者:朱光喜 Zhu Guangxi  作者单位:铁一院甘肃勘察院,兰州,730000 刊 名:工程地球物理学报 英文刊名:CHINESE JOURNAL OF ENGINEERING GEOPHYSICS 年,卷(期): 06(3) 分类号:P631.3 关键词:音频大地电磁   AMT   铁路隧道   工程勘察   Robust处理   二维反演  

篇7:地质雷达在隧道衬砌质量检测中的应用

地质雷达在隧道衬砌质量检测中的应用

地质雷达作为一种新型无损检测设备,因其快速、高效、分辨率高等优点迅速在各个工程行业得到推广.文章在阐述地质雷达工作原理的基础上,介绍了地质雷达检测工作方法、参数设置,并结合工程实践对隧道衬砌检测中遇到的衬砌界面、拱架与钢筋网、空洞、不密实体、地下水等波形的.特征加以分析总结.

作 者:裴巧玲 PEI Qiao-ling  作者单位:陕西铁路工程职业技术学院,陕西,渭南,714000 刊 名:常州工学院学报 英文刊名:JOURNAL OF CHANGZHOU INSTITUTE OF TECHNOLOGY 年,卷(期):2009 22(5) 分类号:P631.5 关键词:地质雷达   隧道衬砌   质量检测   无损检测  

篇8:铁路矿山法施工质量隧道工程论文

铁路矿山法施工质量隧道工程论文

1前言

对近年来监督检查发现问题进行统计分析,隧道问题占检查发现问题总数的30~50%,尤其是矿山法施工隧道问题所占比例较大。这说明,当前铁路隧道工程矿山法施工不规范的问题较为突出,需要各参建单位引起重视,在施工中不断改进工艺,强化过程控制,提高隧道工程施工质量。

2隧道质量问题主要表现形式及其影响

根据、隧道工程专项监督检查发现问题进行统计分析,按工序进行分类可以看出:隧道初期支护、衬砌、防排水问题突出,洞身开挖、围岩监控量测、超前地质预报等问题也不少。在监督检查过程中,发现大部分问题在不同建设项目、不同工点、甚至同一工点的不同时段重复发生。

(1)隧道开挖

擅自改变设计工法或不完全按设计工法实施、安全步距超标等“红线”管理问题,在当前矿山法隧道施工中普遍存在,在城市地下隧道施工中尤为突出,给后续施工带来较大安全隐患。就其直接原因,一是技术交底流于形式,作业队伍不按设计要求施作,经验主义严重,且大部分以完成实物工程量作为工费结算依据,开挖作业人员片面追求进度;二是架子队管理虚化,变相违规转包分包工程,以包代管;三是技术人员业务能力不满足现场需要,不能准确判识围岩状况,特别是在遇到围岩变弱时,不能及时采取可靠的安全防护措施;四是安全检查流于形式,工序检查验收把关不严格,不能及时发现和排除事故隐患;五是城市地下隧道普遍采用双洞单线,掌子面作业空间有限,各工序交叉干扰大,不利于流水作业组织。

(2)超前地质预报及围岩监控量测流于形式

相关成果不能有效指导后续施工。就其直接原因,一是未将超前地质预报和围岩监控量测纳入工序管理;二是缺少专业队伍,大部分隧道施工的超前地质预报和围岩监控量测工作,均为委托其他单位进行,相关成果资料不能及时、有效地提供给项目部各级技术管理人员;三是数据资料弄虚作假,擅自减少现场作业量;四是超前地质预报手段单一,未能采用长、中、短距离相结合的综合地质预报方法;五是围岩监控量测点埋设深度不足,测杆未能进入基岩,部分隧道存在观测频次不足等,致使监测数据不能真实反映围岩变化情况。

(3)超前小导管施作数量、长度、外插角不满足设计要求

未注浆,系统锚杆施作数量、规格型号不满足设计要求等问题,在矿山法隧道施工中比较普遍。就其直接原因,一是偷工减料,部分作业队伍从节省成本角度考虑,能省则省,不按设计要求施作;二是安全意识不强,部分作业队伍未能深刻认识超前支护对后续作业的安全防护作用。

(4)初期支护局部平整度差

强度不足、背后空洞或不密实、变形开裂甚至侵入二次衬砌轮廓线等问题,在隧道质量问题中所占比列较大。就其直接原因,一是爆破设计流于形式、光爆效果差,超欠挖现象严重且未按规定工艺步骤处理甚至在喷射混凝土时采用石棉瓦、防水板等物品遮挡较大超挖部位,断面轮廓未进行严格验收,极易导致二衬厚度不足、背后脱空等质量问题的发生;二是拱架间距超标或以弱代强,钢架背后与基岩面间未采取措施顶紧,拱架偏离设计轮廓线,导致围岩收敛变形速率过大,支护出现变形;三是富水围岩地段止水效果不佳,长时间流水带动泥沙流失致使围岩加大变形;四是初支喷射混凝土强度不足,有些自建小拌合站生产喷射混凝土疏于管理,过程控制较差,喷射工艺随意,甚至个别使用干喷工艺,养护方式不当和养护时间不足。

(5)局部二衬混凝土强度、厚度不足

二衬背后空洞或不密实,仰拱及填充一次浇筑、厚度不足或隧底回填虚砟,二衬钢筋布设间距超标等问题,隐蔽性较大,严重者将极大地影响运营安全,需辅以必要的检测手段方可发现。就其直接原因,一是未对隧道初支轮廓进行量测或量测工作不细,当超挖较多时,不按规定采用同级混凝土回填,而是抛填弃砟;二是防水板挂设质量不合格,松紧度不当或破损、甚至脱落,浇筑时混凝土不能将防水板压紧并密贴在初支混凝土基面上;三是混凝土生产、运输、浇筑、养护不到位,混凝土拌和物性能指标选择不当,在运输距离较远时造成混凝土产生离析,对新旧混凝土接茬处和墙脚等部位振捣不到位甚至漏振,在个别洞内湿度不满足要求时未采取措施保湿加强养护;四是回填注浆不密实,注浆管道布置形式单一,注浆工艺随意,过程控制缺失,注浆后未进行复检,致使防水板与初支间空隙长期存在形成空洞;五是仰拱施工未安装弧形模板,不能保证仰拱一次浇筑高度和宽度。

(6)防排水效果不佳

设计的初支、防水板、二衬等多道防水线均没能完全施作到位,在二衬表面出现渗漏水现象,尤其是在城市地下隧道全包防水施工中表现较为突出。就其直接原因,一是防水板铺挂前基面处理不到位,在浇筑二衬混凝土时造成防水板局部破损;二是止水带安装不合格,施工缝及沉降缝防水处理未按设计施作到位;三是二衬混凝土施作过程中振捣不到位、模板拆除过早,局部混凝土不密实,混凝土未一次浇筑完成出现施工冷缝,施工缝处理质量差尤其是纵向施工缝凿毛、清理不彻底;四是排水盲管安装质量差,存在反坡积水、破损被混凝土堵塞,出水口位置偏差大、未及时清通导致衬砌后出现压力水头;五是城市地下隧道全包防水普遍采用自粘式防水板,容易出现防水板挂设不圆顺、接缝不严密、钢钉钉挂后不处理、保护膜不撕除或沥青粘性失效等现象。

3施工管理原因分析

(1)施工现场技术管理缺位

是大部分量问题普遍存在的重要原因。部分施工单位对个别隧道存在以包代管的现象,施工技术方案的编制、复核、审批程序流于形式,方案内容缺乏针对性和可操作性,施工现场过程控制流于形式。

(2)工序验收把关不严

是造成大部分质量问题重复发生的.主要原因。部分施工、监理单位现场技术管理人员业务素质不高、责任心不强,对工序的自检、互检、交接检制度落实不到位,现场检查验收过程中未认真核对设计文件和现场实际情况签署质量验收文件,部分检验批验收资料与实际情况明显不符。

(3)勘察设计工作不到位

由于前期勘察工作不细,地质资料不详细,造成部分隧道开挖工法和支护措施不合理;施工现场设计配合不到位,部分隧道围岩状况变化后设计变更不及时,尤其是在围岩变弱的情况下支护措施明显不足。

(4)教育培训流于形式

部分施工单位的三级安全、技术交底资料仅为应付上级检查、未落到实处,部分作业指导书和技术交底编制内容缺乏针对性和可操作性,技术交底未做到“横向到边、纵向到底”,造成部分作业人员不清楚各工序的施工质量标准和作业要求,甚至存在部分现场作业人员违章蛮干的现象。

(5)考核机制落实不到位

部分参建单位内部考核的激励约束机制未有效运转,部分管理人员对施工质量问题的重视程度不高,对施工现场存在的质量安全问题“视而不见”、“习以为常”。个别建设单位对施工、监理、设计单位企业信用评价未能严格按照相关文件要求对标考核。

4预防控制措施建议

(1)建设单位要充分发挥建设管理龙头作用

以标准化管理为抓手,强化源头、过程和细节控制,积极推进机械化、工厂化、专业化、信息化等现代化施工管理手段的应用,认真落实安全风险和质量控制关键环节的监管,强化隧道工点的围岩监控量测、超前地质预报的管理,切实提高参建各方的质量安全意识和管理水平。在工厂化方面,建议在指导性施工组织设计中明确要求组建钢结构加工厂,对隧道模板台车、型钢钢架、钢筋网片、超前小导管等钢构件集中加工制作、统一配送,有效卡控偷工减料、质量不达标等问题发生。在机械化方面,组织研发防水板铺设机,大力推广使用移动栈桥、喷射机械手等先进设备,提高工序施工质量和效率。在专业化方面,全力推行架子队管理,坚决清理违法分包、转包、以包代管等行为,强化过程控制和现场管理的标准化。在信息化方面,推广应用工地试验室压力机、万能材料试验机等检测数据的在线实时监控,混凝土拌和站计量偏差、拌合时间等数据的在线实时监控,隧道围岩量测断面数据采集和围岩收敛情况的实时报告、分析等,及时防范和消除质量安全隐患。

(2)强化勘察设计工作在隧道施工质量安全管理的源头作用

在前期勘察过程中,工作要细致,在遇到不良地质及软弱围岩隧道时要加大地质钻孔的频率,选择合理的开挖工法和支护措施,确保工法适应现场;在隧道施工过程中,设计配合工作要及时、到位,遇到围岩状况发生变化时要及时核实现场地质情况,及时出具变更设计文件,及时指导现场施工。

(3)强化质量安全“红线”管理

施工现场存在擅自改变设计工法和安全步距超标时必须暂停掌子面掘进,上道工序未验收合格严禁进入下道工序施工。

(4)超前地质预报和围岩监控量测

要严格纳入工序管理,选择专业队伍实施。实施过程中确保预报成果和监控量测数据的真实、有效,及时指导现场施工。

(5)强化第三方检测管理

必要时超前地质预报和围岩监控量测可实行第三方监测管理,做到及时发现问题、及时整改,强化过程控制。

(6)按照工程质量终身负责制

各建设单位要对隧道工程的施工、监理单位管理人员和检验批等验收签字人员的资格情况进行逐一登记、审核,按规定程序进行变动人员审批管理,确保责任落实的可追溯性,严把检验批、分部分项工程、单位工程验收关。

(7)强化教育培训制度

不走过场,真正落到实处。一方面对作业层要坚持安全、技术交底,让每一名作业人员都清楚各工序的作业内容、作业标准、工艺要求以及安全注意事项,做到简明扼要、有针对性和可操作性,有条件可实行班前安全交底和现场实作过程交底;另一方面对管理层要将项目部制定的标段、单位工程施工组织设计以及分部分项施工专项方案传达至各级管理人员,让管理人员明确各自的工作内容、验收标准,并有针对性的进行现场巡查。

(8)建立长效考核激励约束机制

一方面建设单位要对各参建单位在铁路建设中的合同履约、质量安全管理行为、工程实体质量、现场施工安全等方面加强检查,对发现符合不良行为条件的应及时进行记录、公示、确定并上报相关部门和单位,严格企业信用评价,并将评价结果与招投标挂钩;另一方面各参建单位要建立内部考核机制,落实岗位职责,将建设项目管理目标层层分解,逐级落实至每一岗位、每一管理人员,对质量安全管理做到分工明确、各负其责。

5结语

随着铁路隧道工程施工的工厂化、机械化、专业化、信息化的持续推进和不断强化、完善,以建设单位为龙头的建设项目参建各方继续以标准化建设为抓手,进一步强化隧道施工过程控制,矿山法隧道施工质量安全问题将会逐步减少,逐步消除重特大安全生产责任事故的发生。

篇9:铁路隧道工程喷射混凝土设计方法探讨论文

铁路隧道工程喷射混凝土设计方法探讨论文

摘要:在铁路隧道施工过程中,材料质量直接影响隧道施工质量,为了提高隧道的支护性能,提高稳定性与安全性,在施工过程中一般采用喷射混凝土材料。本文对喷射混凝土材料的原材料以及原料的配合比进行分析,旨在提高喷射混凝土的性能,提高隧道工程的稳定性与牢固性。

关键词:铁路隧道工程;喷射混凝土;配比

喷射混凝土是利用压缩空气或其它动力,将各种原材料按照一定的比例配置而成的混凝土混合物沿管路输送至喷头处,再以较高速度喷射于受喷面,借助水泥、骨料等各种原材料之间的连续撞击以及压实过程而形成的一种混凝土材料。在传统的混凝土工程施工过程中,材料的配置、运输、浇筑振捣等是分开的,每个步骤之间的衔接都十分关键,对混凝土材料的质量有很大影响,而喷射混凝土将混凝土的制备运输和应用过程都融合为一体,使得整个混凝土制备过程更加便捷,提高了混凝土制备效率,减少各个环节之间的衔接不当问题,提高了混凝土凝结质量。在对到工程施工过程中,由于喷射混凝土施工简便,其应用十分广泛。

1喷射混凝土配制

对喷射混凝土的配合比进行设计包括两个部分,一个是常规配合比设计,一个是喷射混凝土现场试喷之后对比例进行调整,前一个环节主要是根据工程项目的施工要求对喷射混凝土进行配置,按照常规的配置方法对各种原材料进行准备,后一个环节则是以基准配比为基础,在现场试喷调整、验证之后再确定理论配合比,从而使得喷射混凝土的配制过程更加科学,配比更加合理,提高喷射混凝土的稳定性与牢固性。喷射混凝土是施工十分简便,在铁路隧道、水工隧道、矿山井巷、城市地铁等地下工程以及边坡加固防护工程中的应用十分广泛。例如某铁路隧道工程施工过程中,根据隧道的实际情况采用C25合成纤维喷射混凝土进行施工,施工工艺为湿喷射,其中混凝土配合比设计就包括两个部分,一个是普通的常规设计,一个是在现场根据实际情况对配合比进行调整之后的重新设计,提高了喷射混凝土的强度,可操作性更强。在本工程中,根据工程项目实际情况确定喷射混凝土的砂率宜控制在45%-60%之间,胶凝材料用量不宜小于400kg/m,一天的强度不能低于10MPa,喷射混凝土的养护时间为28天。

2喷射混凝土的配合比设计

2.1原材料的选择

在喷射混凝土配制过程中常用的材料有水泥、河沙、骨料、减水剂等,要根据工程项目的实际情况选择合适的配制比例,提高喷射混凝土的性能。第一,水泥。水泥是喷射混凝土配制过程中的`关键材料,当前市场上的水泥品种较多,差别不大,在选择水泥产品的时候要根据实际情况进行选择,对水泥标号进行确定。第二,骨料。骨料包括细骨料和粗骨料两种,细骨料一般选用质地坚硬耐久、细度模数大于2.5的中粗砂,其中砂中的小颗粒,即直径小于0.075mm的颗粒比例要控制在20%以内。选择粗骨料的时候要根据喷射机输送管道的最小直径来确定,例如本文中所选的实例工程中,根据喷射机输送管道的情况,采用连续级配5-10mm碎石,这种碎石的碱活性低、含泥量及泥块含量都满足铁路隧道建设要求。第三,减水剂。减水剂在喷射混凝土配制过程中也具有十分重要的意义,选择减水剂的时候要选择对混凝土强度及其与围岩的粘结力没有影响的产品,而且不能选择对钢材和混凝土有腐蚀作用的产品。第四,速凝剂。速凝剂是加速喷射混凝土凝结的材料,一般将速凝剂的用量控制在水泥含量的4%左右即可。第五,合成纤维。合成纤维对喷射混凝土的粘滞性有一定帮助,可以起到很好的回弹效果,在喷射混凝土施工过程中常用的合成纤维是聚丙烯合成纤维,通常使用量为0.9kg/m,丝长为718mm。

2.2喷射混凝土的配制

第一,对喷射混凝土的配制强度进行确定。在配制喷射混凝土的时候首先要确定混凝土的强度,在此基础上才能确定各种材料的比例。当前我国工程项目施工过程中要求的普通混凝土配合比强度一般为95%,C25喷射混凝土配制强度等级大约为35MPa。第二,对用水量及水胶比进行确定。在喷射混凝土配制过程中,水分的多少会直接影响混凝土的稳定性,通常情况下,喷射混凝土配制过程中要求的用水量为165kg,水胶比选定0.36、0.38、0.40均可。第三,对混凝土砂率进行确定。喷射混凝土的配制是依据喷射过程,使得水泥与骨料之间产生连续撞击,从而压实而成的混凝土制备技术,为了能够最大限度地吸收二次喷射时的冲击能量,在喷射混凝土配制的时候相对于普通混凝土而言,砂率要高一些。砂率对于喷射混凝土的粘稠度以及粘滞性有很大影响。对于隧道工程而言,锚喷支护、侧墙和拱顶部位一般选择较大的砂率值。在实际施工过程中要根据工程项目的实际情况对砂率值进行计算,通常将砂率值控制在45%-50%之间。第四,喷射混凝土配合比设计原则。在配制喷射混凝土的时候必须要满足一定的基本原则,例如强度要满足工程项目要求,通常喷射混凝土一天的强度不能低于10MPa,同时要确保喷射混凝土的附着性、密实性等良好,回弹少,不会发生管道堵塞。

3结语

综上所述,喷射混凝土相对于普通混凝土施工而言,是一种高效混凝土施工技术,施工简便,混凝土强度高,凝结性好。喷射混凝土施工过程中要对原材料进行科学合理地选择,确保原材料质量满足要求,同时要对配制比例进行确定,按照设计好的配制比例进行配制,并且要根据现场实际情况进行调整,最终确定喷射混凝土的配合比,提高混凝土质量。

参考文献:

[1]林泽波.喷射混凝土配合比设计方法探讨[J].城市建设理论研究:电子版,(33).

[2]韦刚壮.喷射混凝土配合比设计方式探讨[J].中国高新技术企业,(18).

[3]于虹.喷射混凝土配合比设计[J].山西建筑,(15).

篇10:隧道工程中超前注浆小导管的应用论文

隧道工程中超前注浆小导管的应用论文

摘要:结合某隧道工程施工建设项目,提出了相比较其他施工方案而言,超前注浆小管道技术方案是最为经济的方案,详细论述了超前注浆小管道技术的加固机理和施工工艺流程,同时对其作出了总结,希望能对类似的工程起到一定借鉴作用。

关键词:隧道工程;岩体破碎带;超前注浆小管道

0引言

这几年来,随着快速发展的生活节奏,也提高了对行车时间的要求。行车速度主要是由自行车辆速度和线路距离长短决定的[1]。在一定程度上,新建线路行车时间主要是由线路距离的长度决定的,而线路距离则是由线路选择决定的,在中低山区地带,选取线路上需要多加考虑浅埋暗挖复杂地质条件下隧道的比重。在开挖埋深浅、严重风化和岩体破碎带的围岩上需要先采取超前支护的办法,超前注浆小导管技术具有独特的施工技术,已经被广泛应用在隧道工程破碎带施工的超前支护方案。

1工程概况

本工程为某隧道施工建设项目,全长约为3440m,地势起伏变化大,较为陡峭,沟谷冲沟发育。地面具有490~740m的高程,洞身段山坡具有较为陡倾的自然坡度,变化较大,纵向自然坡度为20~30°左右,进出口横纵向坡度分别为15~20°和15°,隧址区多数是林木,植被覆盖率达到了90%。隧道穿越地层主要使用花岗岩和花岗闪长岩组成,在进出口路段,该花岗岩和花岗闪长岩有出露,由于不同的倾入时间,会导致不同的性质,地质构造的作用影响到地层,具有节理裂隙发育,富集的地下水、较差的工程性质。洞口不良地质问题主要是由泥岩风化削落和砂岩危岩落石造成。隧道的浅埋和断层构造带是GDK111+400~GDK111+500,该路段具有发育节理裂隙、破碎岩体、较差的岩土力学性质和整体稳定性、发育地下水、可能会发生坍塌、突水和突泥的问题。物探低阻异常带是GDK112+400~GDK112+700,该路段也是具有发育节理裂隙、破碎岩体、较差的岩土力学性质和整体稳定性、发育地下水、可能会发生坍塌、突水和突泥的问题。隧道的浅埋和断层构造带还有GDK113+600~GDK113+800,该路段具有破碎岩体、发育地下水、可能会发生坍塌、突水和突泥的问题。

2超前注浆小导管技术方案的确定

由于本工程具有较浅的埋深、丰富的地下水,较为破碎的岩体,较差的'围岩自稳能力,需要对其进行保护,否则容易造成掌子面失稳坍塌,因此为了确保隧道施工的安全和施工质量,需要采取一定的加固措施来确保岩石开挖的稳定。在软弱岩层施工的时候必须遵循快速的理念和“管超前、严注浆、短进尺、强支护、早封闭、勤量测”原则,对本工程的破碎带使用超期注浆小导管技术方案进行施工[2]。

3超前注浆小导管的加固机理

3.1梁支撑效应

由于制造小导管是使用无缝钢管材料,因此在施工小导管的时候,按照一定的角度将小导管的前端插入到开挖断面外深部围岩,后端则是在钢拱架上面进行支撑,并焊接在钢拱架上,在开挖隧道之后可以对卸荷产生的部位松动压力进行有效承受。

3.2水化凝结作用

浆液进行流动和扩散的事后中会有化学和物理反应,从而可以凝结成具有一定强度和低透水性的结石体,并且伴随着大量的水化热产生,降低了破碎带岩层含水量和提高了其强度。

3.3承载拱作用

在开挖隧道之后,会失去拱顶部位岩石的稳定,可能会有坍塌问题产生并形成自然拱。之后应力集中在隧道的两边而逐渐破坏,从而导致进一步扩大顶部坍塌而形成坍落拱。使用注浆小导管技术进行超前预加固的时候,可以很好形成注浆管为中心的拱形加固体。

3.4雨伞作用

将浆液填充在破碎带岩层中,可以对破碎带软弱围岩进行固结,在初支外形处形成一把可以拒地层渗水在初支之外的雨伞,将围岩的抗渗性提高,从而起到较好的堵水效果[3]。

3.5钢混作用

破碎岩石利用浆液的凝结作用,不仅将围岩的强度增大,同时也和超前小导管连接成整体。

4施工方案

4.1施工工艺流程

超前注浆小导管的施工过包括以下几个方面:施工准备→钻孔→清孔→小导管制作和安装→制备浆液→注浆。

4.2材料和技术参数选择

制作超前小导管使用的是具有42mm、3.5mm厚度、4.5m长度的热轧无缝钢管,沿着140度的拱顶范围内进行布置,环向间距和纵向间距分别控制40cm和3m左右,纵向相邻两排的水平投影搭接长度需要超过1m,外插角为5~15°进行交错布置,每环小导管的数量控制在44根左右[4]。本工程的浆液使用的是具有较高凝结率、较大抗压强度的水泥水玻璃双浆液,按照1:1~1:1.06的水泥水玻璃比,压浆的压力控制在0.5~1MPa之间,并以设计的注浆量和设计注浆压力双重控制作为完成注浆施工的标准,在单孔正常进行注浆没有出现渗漏的问题的时候,注浆终压和注浆量都达到设计标准的时候,就可以将该孔的注浆施工结束,公式(1)是计算设计注浆量:V=πR2LNαβ(1)式中:浆液注浆量为V,浆液扩散半径为R,注浆段长度为L,岩层空隙率为N,一般断层破碎带至为0.5,有效注浆系数为a,一般取0.3~0.9,浆液损耗系数为B,一般取为1.2~1.5。

4.3施工重点

4.3.1钻孔小导管按照设计位置使用风钻进行钻孔施工。在钻孔的过程中,由于初期支护型钢具有0.6m/榀的纵向间距,超前小导管具有3m的纵向间距,为了确保钻孔位置的准确性和钻孔质量问题,可以在初支工20a工字钢预打孔,并将小导管的尾部需要连接在钢架上形成一个统一的整体,这样可以起到超前锚杆的作用,从而有效地将支护的刚度提高了。4.3.2安装超前小导管从专用的顶头处顶进钢管,顶进钻孔的长度需要控制在90%管长深度内。将挡圈焊在钢管的末端,为了方便小导管在顶进孔内支护,能够确保严密堵塞住外壁和岩壁间隙,可以使用胶泥麻筋将其缠箍成楔形状。为了方便小导管能够和钢支撑焊接在一起,小导管的尾端需要有足够长度露出。在顶进钢管的时候,为了确保管口能够连接好注浆管,需要确保管口不会出现受损变形的问题。4.3.3注浆以设计的注浆量和设计注浆压力双重控制作为完成注浆施工的标准,在单孔能够正常进行注浆没有出现渗漏的问题时,注浆终压和注浆量达到了设计的标注之后,就可以将该孔的注浆施工结束,在完成一个注浆管的施工之后,就可以迅速将注浆软管卸下,将其清洗干净之后,移到下一根注浆管进行使用。如果出现较长时间的停泵,那么需要对下一根注浆管进行注浆之前,需要将注浆管内所残留的浆液清理掉。在完成注浆施工,需要将超前小导管牢固地焊接在钢架上,将钢筋网铺设在钢架内,进行喷射混凝土。

5结语

针对当前山区隧道线路中存在开挖埋深浅、严重风化和岩体破碎带的围岩上,采取超前支护方案是可行方案之一。文章通过结合某隧道工程实例,项目所处地区地势起伏变化大,较为陡峭,沟谷冲沟发育。鉴于岩体破碎、围岩自稳差,最终采取超前注浆小导管支护方案。文章针对工程实施时的各个施工环节总结出施工重点。从本工程实施效果来看,经支护后的隧道在运营过程中未发生事故,表明支护方案的可行性,为同类工程提供参考借鉴。

参考文献:

[1]冯海鹏,马可理,金沛先.超前注浆小导管在破碎围岩地质隧道中的应用[J].山西建筑,(8):138-139.

[2]宋公仆.洞湾隧道超前支护施工技术分析[J].交通科技与经济,(7):80-82.

[3]张志强.超前注浆小导管施工技术探究[J].中国新技术新产品,2012(4):116.

[4]王财普.浅析隧道施工过程中超前注浆导管的应用[J].科技促进发展,(2):15-18.

篇11:混凝土裂缝在小浪底水利枢纽洞室衬砌工程中的应用论文

混凝土裂缝在小浪底水利枢纽洞室衬砌工程中的应用论文

简介:

裂缝是混凝土建筑物主要的老化病害之一,主要由干缩、砼自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原......

关键字:

混凝土裂缝 小浪底 洞室衬砌

裂缝是混凝土建筑物主要的老化病害之一,主要由干缩、砼自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原因引起。

小浪底水利枢纽南岸引水口工程洞室衬砌工程混凝土的设计指标为c20p8f100。施工条件:泵送,洞外拌和,洞内浇筑,洞内恒温17~180c。为控制裂缝的产生,施工中采取了以下措施。

1.控制干缩裂缝

混凝土的干缩裂缝主要是由于毛细管压力造成的。毛细管孔隙在干燥过程中逐步失水,产生很大的毛细管张力,混凝土体积产生收缩,由于混凝土周围存在约束,内部又有拉应力,当拉应力超过混凝土材料抗拉强度时,便产生了干缩裂缝。

干缩裂缝的控制方法有:

1.1降低混凝土单位用水量:

用水量的增加势必使剩余水增加,因此,从确保混凝土耐久性出发,应降低混凝土单位用水量。

1.2水泥的影响:

不同水泥,混凝土收缩也不同,按收缩值大小排序:矿渣水泥>普通水泥>粉煤灰水泥。

1.3降低混凝土周围约束:

若混凝土周围约束过大,内部拉应力无法释放,拉应力增大而使混凝土干裂,因此,应减少混凝土的分仓长度,以使混凝土内部拉应力能够充分释放。

1.4添加膨胀剂:

适量添加膨胀剂后可以使混凝土体积膨胀,在混凝土内部产生压应力,部分抵消了混凝土因毛细孔隙干燥而产生的拉应力,从而起到控制干缩裂缝的作用。

本工程在控制混凝土干缩裂缝方面采用了上述1~3项方法。其中单位用水量为182kg,采用普通425#水泥,浇筑中掺用粉煤灰,分段浇筑长度在10m左右。

2.控制混凝土因自身质量欠缺而形成的裂缝

高强混凝土水泥的强度等级和水泥用量相对较高,开裂现象比较普遍,因此,高强混凝土不一定是高性能混凝土,而高性能混凝土因具有较高的体积稳定性,收缩变形较小而使抗裂性能大大提高,同时高强混凝土必须采用高效减水剂和超细活性掺和料作为混凝土的第五和第六部分,来提高混凝土的密实性和抗渗能力。因本工程采用泵送施工工艺,要求的坍落度和水泥用量均较大,必须用掺加外加剂的方法来达到既减水又不使混凝土坍落度损失过大的目的,以及添加超细活性掺和料来达到降低水化热、改善与提高混凝土性能和节约水泥的目的。

综合上述两点,我们采用下表所示的混凝土配合比(单位:kg/m3)。

按上表配比,砂率38%、水灰比0.50、坍落度160~180mm、木钙掺量0.25%、粉煤灰掺量15%。

因混凝土中掺加粉煤灰技术在我省水利行业尚处于探索阶段,固替代量并不很大,只有15%,但根据有关资料,混凝土中单方水泥用量每增减10kg,水化热相应升降1~1.20c,即因本工程中掺用粉煤灰而使混凝土内部温度下降了约5.5~6.50c,从一定程度上控制了裂缝的产生。

3.控制水化热开裂

水泥水化后放出大量的热量,使混凝土内外形成较大的温差,从而在温度应力的作用下形成裂缝。特别是在夏季施工,中午气温一般在摄氏370c,露天存放的石子表面温度可达摄氏500c,砼出机口温度在摄氏300c左右,混凝土水化后内部温度更高。为控制混凝土水化开裂,施工中采用了以下措施。

3.1骨料降温

骨料的温度控制主要通过搭盖凉棚和洒水降温来进行。搭盖凉棚可避免太阳光直射,减少骨料吸热,浇筑前2~3小时再用井水(约170c)对粗骨料进行充分的洒水降温。采取以上方法降温后,浇筑前粗骨料内部温度约为240c,细骨料内部温度约为260c,降温效果比较明显。

3.2加冰降温

在混凝土浇筑前购入冰块,砸成粒径约3cm的小块加入砼生料中,充分拌合后量取出机口温度,根据出机口温度来确定加冰量。实际工作中,出机口的控制温度为180c,混凝土单方用冰量在60kg左右。因冰块破碎工作量较大,粒径也很难控制,加入冰块后还需延长拌和时间,降低了混凝土浇筑速度,为克服该问题,实际工作中多采用拌和水降温的方法,即把冰块稍加破碎后放入拌和水池中来降低水温。用此方法,通常能够把拌和用水的温度降至摄氏3~70c左右。

3.3夜间浇筑

白天气温较高,即使采用多种降温措施也很难保证混凝土的入仓温度,而夜间浇筑――特别是后夜浇筑,气温相对较低,采取温控措施后,比较容易控制砼的入仓温度。因此,工作中多把其他工序的施工安排在白天进行,而把混凝土浇筑安排在夜间进行。

通过以上温控措施,使南岸引水口洞室衬砌工程夏季混凝土出机口温度控制在180c以内,入仓温度控制在280c以下,有效地控制了温度裂缝的产生。

4.混凝土养护

由于采用普通硅酸盐水泥和泵送施工工艺,砼早期水化热较大。经量测,一般在浇筑后24h左右,内部温度即达到最大值(约330c),而此时因规范要求钢模板尚不能拆除,还不能直接进行表面洒水降温,为降低混凝土温度,除尽量降低水灰比外,在浇筑完毕后18h即开始对钢模板表面进行不间断的洒水降温,拆模后对混凝土表面进行全天候养护至14天,此时洞室衬砌后的混凝土内部温度已降至180c。通过拆模前是否对钢模板表面洒水降温的对比观察,采取对钢模板表面洒水降温的',明显比未对钢模板表面洒水降温的混凝土产生裂缝少的多,因此,混凝土养护应从模板面的洒水降温开始。

5.控制钢筋锈蚀引起的裂缝

钢筋锈蚀后体积膨胀2~4倍,对周边混凝土产生压力,可能产生顺筋裂缝,甚至脱落,从而影响建筑物的使用。而钢筋锈蚀多为气蚀、电离引起。因此,本工程自一开始就注意了钢筋的锈蚀问题,并从以下几个方面对钢筋锈蚀加以控制的。

5.1钢筋出厂时,其表面有一层致密的氧化薄膜,可以对钢筋起到一定的保护作用。

但该薄膜遇水或受潮后因水的微酸性而脱落,使钢筋酸性氧化而锈蚀。因此,钢筋原材料和加工后的半成品均应作防潮处理。具体的做法是架空放置和上盖防水雨布。

5.2钢筋安装前表面清洁处理

钢筋安装前,其表面必须洁净、无污物,对已发生锈蚀的部位,必须用钢丝刷和砂布打磨干净,以保证钢筋与混凝土的有效结合,同时也可防止因电离而发生锈蚀。

5.3降低砼水灰比和增加混凝土和易性。

5.4加强振捣,提高混凝土致密性,减小混凝土炭化速度,使钢筋有足够长的时间不接触空气。

6.控制洞室周边围岩的变形

为防止洞室だ辔а仪的围岩变形对洞室衬砌混凝土的影响而使之产生裂缝,在洞室开挖支护阶段就已对だ辔а仪进行了锚杆支护,锚杆布置型式为梅花状,直径20mm,长3m,间排距1.251×1.25m;混凝土衬砌后,对周边围岩进行固结灌浆。为保证锚杆和固结灌浆的施工质量,还要对锚杆进行抗拔力试验,对固结灌浆进行压水和超声波检查试验。

通过采取以上措施,小浪底水利枢纽南岸引水口工程洞室衬砌工程混凝土裂缝现象基本得到了控制,取得了良好的效果。

篇12:EH4中隧道工程地质勘察应用论文

关于EH4中隧道工程地质勘察应用论文

1、研究区地质-地球物理特征

研究区主要地层岩性为第四系松散堆积层(碎石土)和泥灰岩、砂岩、灰岩及片岩。测区岩(土)体电阻率参数表.小于300Ωm;泥灰岩电阻率较低,而片岩、灰岩电阻率较高,通常大于1000Ωm;含水断层破碎带电阻率呈现急剧下降趋势。这种构造与围岩体间的差异特征,因此研究区具备开展大地电磁法探测查找断裂构造的工作条件。为了在视电阻率成果图中更直观、明了地看出各种地电性变化及构造特征,对测试原始数据进行如下公式计算:s=100×log10(),(1)式(1)中,s为经过计算后的视电阻率值,Ωm;为测试电阻值,Ωm。

2、工作内容

2.1工作方法

勘探采用仪器为StrataGemEH4电磁成像系统,该仪器使用交变电磁场,不受高阻层的影响,特别是高阻薄层。在沙漠、山前卵石层覆盖区均能有效探测地下深部的地质信息。每个测点工作结束后,现场提供电磁场功率谱、振幅谱、视电阻率、相位、相关度、一维反演等信息,以便检查质量,确保野外资料可靠,可采用EMAP法测量,即连续电磁阵列剖面法,其工作效率高[1]。根据勘察目的,结合工作现场对比试验,本次EH4大地电磁测深选取最优电极矩为20m,为确保数据质量与工作实效,仪器采集分频段进行,上述频带又分成三个频组:一频组:10Hz~1kHz;二频组:500Hz~3kHz;三频组:750Hz~100kHz,在本次数据采集过程中,对三个频组的数据全部采集,且每个频组采集叠加次数不少于8次,根据现场测试结果,对部分频组进行多次叠加。

2.2采集方法

在数据采集之前进行平行试验,在工区进行仪器自检,确定仪器工作正常。所谓平行试验是指将两个电极相互平行摆放(如X方向),两个磁棒也朝同一方向摆放(如Y方向),利用相同参数进行采集,经试验,两个不同电极及磁棒所得的谱线图一致,故所计算的视电阻率曲线也是一致的,仪器工作正常。在试验工作结束后,开始数据采集工作。

3、、成果分析

3.1室内资料整理

电磁法探测是根据电磁波在地下岩层中传播时存在的时差性来反映地下介质的物性差异,即地下介质电场强度、磁场强度和相位的`差异;资料处理就是依据电场强度、磁场强度和相位的差异计算视电阻率值和相位值。a)采用在野外实时获得的时间序列Hy、Ex、Hx、Ey振幅进行FFT变换,获得电场和磁场虚实分量和相位数据φHy、φEx、φHx、φEy,读取@文件(该文件将文件号、点线号、电偶极子长度等信息建立起一一对应关系),读取Z文件(该文件是一个功率谱文件,包含频率、视电阻率、相位)。通过ROBUST处理等,计算出每个频率(f)点相对应的平均电阻率与相位差(φEH),根据趋肤深度的计算公式,将频率-波阻抗曲线转换成深度-视电阻率曲线进行可视化编辑;在一维反演的基础上,利用EH-4系统自带的二维成像软件IMAGEM进行快速自动二维电磁成像,根据区域地质情况进行数据的反复筛查,编辑病坏数据必要时剔除[2];b)对每个频率(f)点相对应的平均电阻率与相位差(φEH)数据进行初步处理分析后,采用商业MTsoft2D2.3大地电磁专业处理软件进行二维处理。该软件采用模块开发,由数据管理模块(DataManager)、正演模块(MTForWardSoft)、数据预处理模块(MTPreSoft)、数据反演模块(MT2DISoft)和反演结果显示模块(MTViewInvSoft)五部分组成。对测线数据进行总览以后进行预处理后,执行静态校正和空间滤波;分别以BOSTIC一维反演结果和OCCAM一维反演结果建立初始模型,进行带地形二维非线性共轭梯度法(NLCG)反演,获得深度-视电阻率数据;c)对深度-视电阻率数据进行网格化,绘制频率-视电阻率等值线图,综合地质资料及现场调查情况,在等值线图上划出异常区,做出初步的地质推断。然后根据原始的电阻率单支曲线类型并结合已知地质资料确定地层划分标准,确定测深点深度,绘制视电阻率等值线图,结合相关地质资料和现场调查结果进行综合解释和推断;d)绘制剖面成果图,用反演输出的深度-视电阻率反演数据绘制出视电阻率等值线剖面图。首先在Surfer软件中绘制电阻率等值图,再转换到AutoCAD中,经修整完成最后的成果图,供分析、解释。

3.2、成果分析

资料分析依据地下地层间的物性差异。地层由于成因环境不同,同时受构造运动的影响,从而在纵向和横向上产生视电阻率和相位上的变化。岩层视电阻率值不仅与地层结构、构造、成份、成因有关,还与其岩石的颗粒大小、密度、地下水含量等因素有关。通过视电阻率变化特征,可以推断地下地层的分布规律、断裂构造等信息。a),隧道设计线里程桩号K1+128~K1+184(地表里程桩号)/K1+086~K1+148(隧道洞身里程桩号),视电阻率值显示为低电阻异常区,推测此处为含水断层破碎带F1,倾角约为73°,宽度约为62m,从电阻率形态推断该断层为正断层。同时经过里程桩号K1+095左13m出钻孔验证在该位置106m以下(由于钻孔深度130m,断层破碎带未打穿)存在断层破碎带与物探推断结果基本一致。施工时应加强防护,以预防落石、塌方、等地质灾害的发生。隧道设计线里程桩号K1+791~K1+872(地表里程桩号)/K1+678~K1+762(隧道洞身里程桩号),视电阻率值显示为低电阻异常区,推测此处为含水断层破碎带F2。倾角约为75°,宽度约为75m,从电阻率形态推断该断层为逆断层。隧道设计线里程桩号K2+570~K2+656(地表里程桩号)/K2+416~K2+498(隧道洞身里程桩号),视电阻率值显示为低电阻异常区,推测此处为含水断层破碎带F3,倾角约为70°,宽度约为82m,从电阻率形态推断该断层为逆断层。隧道设计线里程桩号K4+004~K4+088(地表里程桩号)/K4+050~K4+132(隧道洞身里程桩号),视电阻率值显示为低电阻异常区,推测此处为含水断层破碎带F4,倾角约为80°,宽度约为82m,从电阻率形态推断该断层为正断层。隧道设计线里程桩号K4+535~K4+612(地表里程桩号)/K4+560~K4+640(隧道洞身里程桩号),视电阻率值显示为低电阻异常区,推测此处为含水断层破碎带F5,倾角约为103°,宽度约为80m,从电阻率形态推断该断层为正断层.b)K0+950右50m~K1+250右50m,平行设计隧道线,目的为查证F1断层平行设计隧道线K1+070右50m~K1+122右50m两侧电阻率存在较明显的电性差异且电阻率等值线形态扭曲,推测F1断裂由此通过,倾角约73°,宽度约52m,切割深度相对较大,从电阻率形态推断该断层为正断层.

4、结语

基本查明了断裂构造F1的展布特征,位于里程桩号K1+090~K1+142,同时与K1+070右50m~K1+122右50m位置断层破碎带位置相对应,结合以上两异常位置,推断F1走向为NE28°,倾角为73°,宽度为52m,为一正断层。物探勘察推断出断裂构造F2~F5,由于工作量偏少未作其平行线路,同时覆盖层较厚、无地质露头现象,故其断层走向暂且无法判断。实际应用结果表明,采用EH4大地电磁测深法开展并结合实地地形地貌特征进行工作布置,方法选择正确,资料真实可靠,满足勘察目的,查明了隧道构造分布情况。

相关专题 新工艺隧道