低压配电线路的保护论文

wangjingshengy 分享 时间: 收藏本文

【简介】感谢网友“wangjingshengy”参与投稿,下面是小编精心整理的低压配电线路的保护论文(共11篇),希望能够帮助到大家。

篇1:低压配电线路的保护论文

【摘 要】低压配电遍及各个领域,不仅专业人员接触,众多非专业人员都会触及,这就要求我们设计人员做好低压配电线路的保护,尽力达到大家用电安全,用电可靠;本文从短路、过载、接地几方面浅析低压配电线路的保护。

【关键词】配电线路;短路;负荷断路器;接地故障

低压配电如果在设计、施工中存在不当,将容易导致人身触电或线路损坏,甚至引起电气火灾。为此,要求在低压配电线路设计中,应严格执行《低压配电设计规范》( GB50054-95)及国家有关标准、规范的规定,使之从根本上做好低压配电线路保护,并能正确选择保护电器的各项参数,保证在故障时能按要求切断电源,以保安全。

低压配电系统中各个相关的低压电器之间应有良好的特性配合,以正确的发挥各个低压电器的功能。比如,在《低压配电设计规范)中要求“配电线路采用的上下级保护电器,其动作应具有选择性”。

随着制造技术的不断发展,低压断路器的性能及功能也越来越先进和完善。目前,在民用建筑的低压配电系统中,已广泛地应用低压断路器来实现低压配电系统的各种保护功能。所以,如何正确地选用低压断路器对低压配电的设计至关重要。

1.短路保护

低压配电线路装设短路保护,应在短路电流对被保护对象产生的热作用和机械作用造成危害之前切断短路电流。在民用建筑的低压配电系统中,大多数的短路保护,可以采用断路器来实现。

我们一般用断路器的极限短路分断能力、运行短路分断能力和短时耐受电流三个指标来表示其分断能力;在某些场合,我们希望一台断路器在分断线路最大的短路电流后不维护还可以继续承载额定电流,那么,我们可以按断路器的运行分断能力不小于线路的预期最大短路电流的条件来选择断路器。

否则,可以按断路器的极限分断能力来选择断路器。

从短路发生到短路保护电器动作并分断短路电流需要一定的时间,一般要求配电系统在承受这段时间的短路电流后不会被破坏,这就必须对配电系统中的各种电器、导体及相关连接件进行热稳定的校验;绝缘导体的热稳定校验应符合《低压配电设计规范》第4.2.2条规定。

在设计中,应特别注意那些距离供电变压器较近,计算负荷较小的线路,往往按计算电流选择的导线截面是无法满足热稳定要求。

2.过负载保护

低压配电线路装设过负载保护,应在过负载电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负载电流。过负荷保护电器的动作特性应同时满足以下两个条件:

2.1 IB≤In≤IZ

2.2 12≤1.45IZ

式中:IB被保护线路计算电流。

In保护电器的额定电流(对于可调的保护电器,额定电流In是给定的整定电流)。

IZ被保护导体的允许持续载流量。

12保证保护电器在约定时间内可靠动作的电流。

对于突然断电会导致比因过负荷而造成的损失更大的配电线路,不应装设切断电路的过负荷保护电器(如消防水泵的配电线路等),但应装设过负荷报警电器。还有对于多个低压断路器同时装入密闭箱体内的过负荷保护,应根据环境温度、散热条件及断路器的数量、特性等因素考虑降容使用。

另外,过负荷保护电器的整定电流应躲过正常的短时尖峰负荷电流(如用电设备启动电流)。

3.接地故障保护

低压配电线路装设接地故障保护应能防止人身间接电击以及电气火灾、线路损坏等事故。接地故障保护电器的选择应根据配电系统的接地形式(TN、TT、IT系统),移动式、手握式或固定式电气设备的使用情况,以及电气回路中导体截面等因素的确定。

接地故障是指相线对地或与地有联系的导电体之间的短路,它包括相线与大地、PE线、PEN线、配电和用电设备的金属外壳、敷线管槽、建筑物金属构件、采暖和通风等管道等之间的短路。

接地故障是短路的一种,自然需要及时切断电路以保证线路短路时的热稳定,不仅如此,若未切断电路,它还具有更大的危害性,当发生接地短路时在接地故障持续的时间内,与它有关联的电气设备和管道的外露可导电部分对地和装置外的可导电部分间存在故障电压,此电压可使人身遭受电击,也可因对地的电弧或火花引起火灾或爆炸,造成严重生命财产损失。

而在低压配电系统中按接地形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。

我们可以根据这三种系统接地形式来分析一下它们各自的特点:

3.1 TN系统的接地故障保护

TN系统配电线路接地故障保护的动作特性应符合下式:

Zs.1a≤U0

式中Za接地故障回路阻抗。

la保护电器在规定的时间内自动切断故障回路的电流。

U0相线对地标称电压(v)。

系统切断故障回路的时间应符合:配电线路或仅供给固定式电气设备用电的末端线路,不应大于5s;供电给手握式电气设备和移动式电气设备的末端线路或插座回路不应大于0.4a。

TN系统的接地故障多为金属性接地故障,故障电流较大,可利用作过负荷保护和短路保护的过电流保护电器,兼作接地故障保护。但在某些情况下,如线路长、导线截面小时,过电流保护电器常不能满足系统切断故障回路的时间要求,则应采用漏电保护器作接地故障保护。

3.2 TT系统的接地故障保护

TT系统配电线路接地故障保护的动作特性应符合下式:

Ra.1a≤50V

式中Ra/F露可导电部分的.接地电阻和PE线电阻之和。

la保证保护电器切断故障回路的动作电流。

由于TT系统的故障电流不易准确计算,长延时过电流保护1a值实际上难以确定,而TT系统的故障电流较小,过电流保护难以满足灵敏度要求,因此TT系统中应采用漏电保护器作接地故障保护。

TT系统配电线路内由同一接地故障保护电器保护的外露可导电部分,应用PE线连接,并接至共用的接地极上。当有多极保护时,各级宜有各自的接地极。

3.3 IT系统的接地故障保护

IT系统发生第一次一相接地故障时,故障电流为另两相对地电容电流的向量和,故障电流很小,外露导电部分的故障电压限制在50v及以下,不构成对人体的危害,不需要中断供电,应由绝缘监视电器进行声光报警,以便尽快排除故障。第一次接地故障时保护电器动作特性应符合下式:

Ra.1d≤50V

式中R外露可导电部分的接地极电阻。

1d相线和外露可导电部分间第一次短路故障的故障电流。

当发生第二次接地故障时,如IT系统外露导电部分为单独接地,故障回路的切断应符合TT系统接地故障保护的要求如外露导电部分为共同接地,故障回路的切断应符合TN系统接地故障保护的要求。

由此看来短路故障、过负载均属过电流保护,目的是防止导体过热,在达到规定的允许最终温度之前切断,以防止导线(电缆损坏,甚至引起火灾。接地故障保护:依靠保护电器在规定的时间内切断,除防止电线过热外,更主要是作间接接触电击防护。但必须指出的是,间接接触电击防护有多种方式,自动切断电源不是惟一的方式,但是却是最常用的方式。

综上所述,作为设计人员要做好低压配电线路的保护,就应全面准确的理解、执行《低压配电设计规范》,并要求在设计过程中精心考虑,从安全、可靠、经济及节能等方面进行综合分析;只有这样才能更好地保证大家用电安全、用电可靠。

【参考文献】

[1]民用建筑电气设计规范.JG16.

[2]建筑电气专业技术措施.中国出版社.

篇2:低压配电线路的保护论文

【摘 要】煤炭多以井工开采为主,煤炭生产人员、机电设备、低压供电系统多集中在采区内,一旦发生低压配电事故,将会矿山安全生产产生很严重的后果。我们知道,低压配电事故率一般会高于高压配电事故率,且以漏电事故为主,因此分析和研究低压配电线路短路保护技术对于保证矿山安全生产意义十分巨大。本文具体分析了低压电网的漏电危害,然后研究了短路电流的计算方法,对于减少低压供电故障十分有效。

【关键词】低压电网;漏电;短路电流;电流整定

1 井下低压电网发生漏电的危害

矿山采区内自然条件十分恶劣,矿山机械与生产工人相对集中,且大部分低压电网在些聚集,一旦发性低压漏电、短路事故,将会矿山造成严重影响。

1.1 人员易触电

如果煤炭生产工人直接接触到没有做好绝缘措施或绝缘失效的电气设备时,就容易导致触电事故发生,且如果设备外壳带电较强时,超过人体承受的极限,就容易导致触电伤亡事故。更为严重的是,当工人直接接触到因绝缘保护套破皮而暴露在外的芯线,很可能造成具大人员伤亡。

1.2 引起瓦斯及煤尘爆炸

篇3:低压配电线路设计策略探讨论文

低压配电线路设计策略探讨论文

【文章摘要】随着我国人口基数的不断增大,国内居民用电和工业用电的量也在不断的增加。近年来,由于多地发生居民用电引发安全事故的案例越来越多,人民群众对于用电安全提出了更高的要求。电力系统中低压配电线路的好坏将直接影响到人民群众的用电量和用电安全。本文写者从电力系统中低压配电线路设计过程中可能出现的问题进行分析,并且结合自己的工作经验提出优化电力系统中低压配电线路设计的策略措施,为现实中电力系统中低配电线路设计提供一定的参考意见,满足人民群众对用电安全的需要。

【关键词】电力系统;中低压配电;线路设计

1.电力系统中低压配电线路设计的总体思路

电力系统中线路设计的好坏会给居民用户造成不同程度的影响,为了满足人们对用电安全的需求,我们需要根据用户的需要对线路设计进行不同程度的优化。在电力系统中低压配电线路设计的过程之中,设计者首先要考虑到在施工过程之中可能遇到的各种问题,并在施工的过程中要嘱咐施工人员的注意。首先,在低压配电线路设计的过程之中,高压线和低压线对线路设计的要求个不一样,设计者在进行线路设计时一定要满足两者的不同需求,尤其是对线路档距要求的满足,要尽可能的保证所设计好的低压线路不和10kV的高压线路架设在一起,避免出现用电安全隐患。其次,在配电室内部,线路设计的压力不低于室外线路的设计,配电室内部由于线路设计不合理会造成巨大的安全隐患。为了防止发生安全事故,在低压设备和高压设备之间应当放置专门的保护设施。除此之外,在电力系统中低压配电线路设计的过程之中,低压线路要与通信设施间隔适当的距离,使得两者之间不会互相影响,避免各种安全问题的出现。在现实的生产生活当中,低压线路的进户线材质绝大多数为硬芯绝缘管,这种材料容易造成损坏,需要施工者在施工的过程之中,添加塑料管进行防护,避免安全事故的发生。

2.电力系统中低压配电线路设计的主要内容

2.1电力系统低压配电线路的路径勘测与定位

为了保证电力系统中低压配电线路设计已经足够的优化,线路设计者要对低压配电线路所涉及的线路路径进行严格的考察,必须要满足对居民安全用电要求。首先,要求在进行低压配电线路的选择过程中,需要严格按照国家在这方面的规定,科学的选择出合理的起点和终点,并按照相关的制度体系对施工的实际条件进行准确的评估,然后制定出最合理的低压配电线路路径。除此之外,在低压配电线路路径的选择的过程之中,要严格按照国家相关的原则进行选定,具体的来说,要尽可能的让配电线路与社会交通主干线间隔足够的距离,遇到一些煤炭矿区和市区的绿化地带时要选择合理避开,保证低压配电线路能够正常的运行。电线杆位置的设定对低压配电线路的性能会造成严重的影响,科学的选定电线杆的位置是优化低压配电线路的重要手段。在选择低压配电线路电线杆的位置时要严格执行并有关部门在该方面的原则,并且对其进行供电半径的评估,找到最佳的电线杆位置。

2.2电力系统中低压配电线路导线型号和截面的选择

作为电力系统中低压配电线路设计中核心部分输电导线的选择对优化线路系统有着决定性的作用。输电导线承担着运输电能的作用,是低压配电线路设计中重要的参考因素之一。基于输电导线在电路设计中的重要性,在进行电力系统中低压配电线路设计的过程之中,一定要考虑好低压配电线路导线型号和截面半径是否能够满足人们的需求,对其具体规格要严格按照国家的要求,尽可能的避免由于输电线路导线材质问题引发安全事故的情况。不同的地区,天气环境和气候都会有很大的区别,在选择输电导线的规格时,设计者一定要考虑到天气气候的原因,根据当地的气候和湿度来选择低压配电线路的材质和规格,防止因为导线长期的暴露于外界的环境之下所引发一定的质量问题。除此之外,输电导线同样有自己的使用年限,在输电过程中会对其造成一定的损耗,会浪费一定的电力。为了尽可能的减少电力在传输的过程之中的损耗情况,在进行电力系统中低压配电线路的导线型号的选择的过程之中,选择的导线的截面积要符合一定的要求。潮湿的外界环境会对输电导线造成腐蚀,设计者在选择输电导线的种类时需要考虑到腐蚀的现象,选择具有耐腐蚀的特性的导线,保证整条线路的正常运行。

2.3电力系统中低压配电线路防护措施

加强对低压配电线路的.防护同样是优化线路设计的一个有效途径。在现实的施工过程中,为了保证电力系统低压配电线路的安全运行,设计者需要在线路防护中添加防雷设计。具体的来说,就是在电力系统中低压配电线路设计防护措施时,在原有的基础上设置可以对雷电拦截和疏导的体系,在该系统的保护下,雷电可以通过系统疏导到地下,减少雷电对电力系统中低压配电线路的伤害,防止雷电对居民用电设备造成损害。从目前的实际情况来看,科研部门对输电导线上相应的防雷技术不能够满足人们的需求,很容易在雷雨天气发生雷击事故,导致输电设备发生损害。为了对人们群众的生命财产安全负责,我们需要加大对输电设备防雷技术的研究,将其更好的应用到电力系统的防护体系当中,避免各种雷电事故的发生,保障电力系统正常运行的同时,确保人民群众的安全用电。

3.总结

随着人们生活水平的不断提高,居民电器设备在不断的增加,用电量也在大幅度的增长。用电安全是所有用电户最关心的问题,为了保证人民群众安全用电,我们在电力系统中低压配电线路设计的设计过程之中,一定要按照国家的要求进行设计,提高低压配电线路设计的合理性和科学性。电力系统中低压配电线路设计的好坏对人民群众生命财产安全有着重大的影响。因此,我们在设计的过程之中必须做到高度重视,制定出合理的方案,满足安全的需要。以上均为本人个人的观点,希望各位同行能够提出一定指导性的意见和建议。

【参考文献】

[1]曾琦.浅谈低压配电线路线损管理措施[J].农家科技,(S2):32~34.

[2]诌伟平.低压配电线路断线原因、危害及防范措施[J].农村电工,(11):2~4.

[3]蒋建平.浅谈低压配电路维修[J].中国高新技术企企,2010(07):143~145.

篇4:低压配电保护技术论文

低压配电保护技术论文

低压配电保护技术论文【1】

【摘 要】低压配电保护技术是电气设备中的重要组成部分,一旦出现技术问题则会影响到整个电气设备的运行状况,甚至会引起火灾或者是触电等事故。所以,在今后的发展过程中一定要运用科学、合理的方法提高低压配电保护技术。

本文作者对低压配电保护技术进行了详细的分析与总结,并提出了相应的方案。

【关键词】低压配电;保护技术;电气设备;电气灵敏度

1.配电线路保护的选择性

配电线路保护的选择性是指在配电网络中某一点发生过电流故障时,配电保护电器按预先规定动作的次序有选择性地动作,不允许越级动作,把事故停电限制在最小范围内。

根据《规范》要求,配电线路采用的上下级保护电器动作应具有选择性,各级之间应能协调配合。目前采用的保护电器主要有两种:断路器和熔断器。而前者从保护特性的角度又可以分为选择型断路器和非选择型断路器。

1.1配电线路对保护电器的要求

配电线路对保护电器的要求很高,必须要对其进行详细的分析与总结,才能进行保护电气的安装。一般情况下,配电线路主要由放射式以及树干式两种。除此之外还可以将这两种进行混合。

根据保护电器在配电线路中的位置以及重要性,可以将其分为三级,每一级的要求都是不同的,具体内容为:

第一、低压主开关柜内保护电器。

低压主开关柜内保护电器应把供电的可靠性放在首要位置,以确保连续供电。由于低压保护电器接近电力变压器,主配出母线的容量特别大,因此要求它既应与电力变压器一次侧的高压熔断器的保护特性配合,又应与下级保护电器尽可能实现全选择性保护配合。

第二、一般配电开关柜内保护电器。

一般配电柜是电网的中间层部分,配电柜中低压保护电器主要任务是尽快切断和限制短路电流及在系统设备和线路上产生的机械应力和热应力,尽快隔离出故障的馈线和设备,保证非故障线路持续供电。

第三、终端配电箱内保护电器。

终端配电箱直接连接用电设备,短路或接地故障时要求尽快甚至瞬时切断电路,无选择性要求。终端配电箱内的低压保护电器应设短路和接地故障保护,而线路末端则不必设短路保护,而是根据所接用电设备需要装设控制电器(如接触器)或用电设备的过载保护电器(如热继电器)。

1.2低压保护电器的级间选择性配合技术

在对低压保护电气的级间选择性配合进行选择的过程中,首先要充分了解低压保护电器的特性,这样才能够结合实际情况进行分析,并选择出适合的保护电气;其次,就是要对保护电气的动作电流、时间以及额定电流进行整定,这样才能够在线路出现故障之后将停电范围缩小。

在选择的过程中具体包括以下几种情况:

第一、上下级均为熔断器的选择性配合。

第二、上级为熔断器,下级为非选择型断路器。

第三、上级为非选择型断路器,下级为熔断器。

第四、上下级均为非选择型断路器的选择性配合。

第五、上级为选择型断路器,下级为熔断器。

第六、上级为选择型断路器,下级为断路器。

第七、上级为带接地故障保护的断路器。

低压保护电器的级间选择性配合主要包括上述七种,所以在进行选择的过程中一定要结合实际情况,采用科学、合理的方法进行选择性配合,以提高其安全性与可靠性。

2.低压保护电器的灵敏度

低压保护电器的灵敏度是指保护电器在系统最小运行方式下,在其保护范围内发生最轻微的短路故障时能可靠动作。它直接决定了低压保护电器动作的可靠性,是反映配电线路安全措施有效性的重要指标。

低压保护电气的灵敏度主要包括熔断器的灵敏度以及断路器的灵敏度两方面,而提高保护电气灵敏度的措施主要有以下几点,具体内容为:

第一、保护电器的额定电流或整定电流值在大于线路计算电流(或要求的倍数)和能躲过短时过载电流的条件下尽量选小。

第二、尽量加大断路器保护的线路末端在系统最小运行方式下的单相短路电流,即降低线路的相线和中性线。

第三、采用低压断路器时选用带短延时保护的低压断路器。

第四、若带短延时保护的低压断路器灵敏度不能满足《规范》要求时,应采用零序电流保护或剩余电流动作保护。

3.线路保护的选择性与保护电器的灵敏度之间的关系

确保低压保护电器动作的选择性和提高保护电器的灵敏度是有矛盾的。在设计过程中只有正确整定参数,才可能做到两者兼顾。而对于最末一级线路的保护,在符合其它条件下选择性应尽量选低些以利于提高灵敏度,同时也有利于上级保护的选择性。

若考虑技术经济的合理性出现了难以两者兼顾的情况,则应权衡利弊,有所取舍。例如在火灾爆炸危险环境和有触电危险的场所,应着重于提高保护电器的灵敏度,而对触电危险性不大而对供电可靠性有较高要求的场所,则应着重考虑线路保护的选择性。

4.低压保护电器选型方案

4.1低压保护电器应用现状

随着科学技术水平的不断发展与进步,传统以熔断器作为低压保护电器的方式存在种种不足,已经不适应社会的发展需求,只有少数旧小区以及生产装置在应用。

目前,一些新小区以及生产装置中普遍应用的低压配电保护电气为低压断路器,这主要是因为其不仅可以遥控合闸、带电负载断开,而且还具有很多的保护功能,能够有效提高其安全性。

4.2配电线路故障特点

根据《规范》要求,配电线路应装设短路保护、过负载保护和接地故障保护。对于配电线路来说,主要故障为接地故障,约占所有配电线路故障的80~90%。

而短路和接地故障发生在末端回路多,大约占至90%以上,特别是插座回路更是如此,因为插头、插座和移动电器及其导线和接头等较容易出现故障。对于电动机等用电设备来说,通常是过载多,短路故障较少,而过载通常用热继电器或电动机保护器保护,不会使终端配电箱内保护电器动作。

4.3低压保护电器选择

根据配电线路的故障特点和低压保护电器的级间选择性的配合情况,依照“技术先进,经济合理”的原则,对保护电器的选型方案建议如下:

第一、低压主开关柜内保护电器应选用选择型断路器。

第二、终端配电箱内保护电器通常选用非选择型断路器或漏电断路器,以提高保护电器灵敏度。

第三、对于一般设备,一般配电柜内保护电器宜选用熔断器,因为熔断器限流特性好,价格便宜,易满足选择性要求。但供电用电设备不多,且偶然停电影响不太大时,也可选用非选择型断路器。

第四、对于重要设备,各级均宜选用智能型断路器并采用ZSI技术确保级间选择性的配合,提高供电可靠性。

5.结束语

综上所述,随着我国工业化进程的不断推进,各类低压配电保护装置得到了广泛应用。可是人们却忽视了保护技术的不断改革与创新,传统的低压配电保护技术已经不适应社会的发展需求,给我们的工作与生活带来了一定的'安全隐患。

所以,在今后的发展过程中一定要积极探索更加安全、环保、可靠的低压配电保护技术。

【参考文献】

篇5:低压配电线路常见故障的防护方法论文

低压配电线路常见故障的防护方法论文

低压配电线路常见故障的防护方法论文

一、导致低压线路常见故障的原因分析

1、线路自身的原因造成的运行故障

随着社会经济的不断发展,人们日常生活、生产以及工作中的用电量也在逐渐的增加,与此同时,低压线路的故障率也频繁发生,造成这方面的主要原因是出在线路的运行上,主要是线路负荷造成的。另外,很多线路长期处在过负荷运行的过程中,会减少线路的使用寿命,导致线路老化,经常会因为线路的接点处出现发热的现象而造成线路断线的故障。此外,还有很多用户设备的线路设计未经过细致的规划,低压线路主要与用户供电建立直接的联系,如果用户线路设计过长、截面过小的话,就会造成在供电过程中出现过负荷,极易造成低压线路的运行故障。

2、雷击原因造成的低压线路运行故障

低压线路的雷击故障在线路运行的过程中常有发生,尤其是在多雨季节、多雨地区、空旷地区等,有很多空旷地区的低压线路是以架空线路的方式存在,而且,线路的沿途比较长,周边也没有高大的建筑物,一旦出现雷雨天气极易对线路造成损坏,会造成低压线路的绝缘子爆裂、断线、避雷器爆裂、配变烧毁等现象,严重影响了低压线路的正常运行。

3、设备原因造成的低压线路运行故障

低压线路主要是为居民提供用电的主要线路,而且,在线路运行的沿途上包括多种类型的电气设备,各个设备的功能也有所不同,通过这些设备的各项功能来实现供电的安全性和可靠性。但是,如果线路上设备出现故障的话,就会造成低压线路运行的故障,例如,绝缘子破裂,会出现绝缘电阻降低、跳线、放电、脏污出现的闪络等现象;配变自身故障或工作人员操作不当而引起的弧光短路的现象;避雷器超出了使用寿命、质量不合格等未及时得到更换等,这些设备故障都会引起低压线路的运行故障。

4、管理原因造成的低压线路运行故障

运行管理是低压线路正常运行的安全保障,而在当今低压线路运行的过程中,有很多管理环节做不到位,尤其是工作人员责任心以及技术能力的低下,使得低压线路的运行管理水平较低,不能及时的发现低压线路中的断线股、磨损等缺陷,使得线路的故障不断的扩大,对低压线路运行的安全性、稳定性造成极大的影响。另外,在管理流程上存在一定的缺陷,尤其是对低压线路的运行管理存在一定的模糊性,使得管理质量较低,再加上管理责任落实不到位,最终造成低压线路故障的频繁发生。

5、技术方面的原因

低压配电线路存在同一根电杆上有较多线路穿插交错的现象,一旦发生故障,很难找到发生故障的线路,不仅浪费维修时间而且可能造成停电区域扩大的后果;由于城市建设快速发展以及用户迁移等原因造成的变电所不合理分配也是目前存在的问题,变电所的不合理分配使一些线路过长,既浪费材料又增加了线路分支,加大了电能运输过程中的损耗,导致供电电压降低,影响电能质量。当前配电线路建设取得了明显的成果,但还是存在设备陈旧、落后的现象,使用陈旧的配电设备不仅增大线路耗能、降低电能质量而且还存在着严重的安全隐患,危害人们生命财产安全。

二、低压线路常见故障的运行维护管理措施

1、完善的管理制度

首先根据实际情况在制度上对配电线路巡查、维护、检修等方面制定条例,使配电线路管理做到有法可依、有章可循。对配电线路管理进行正规监督,严格检测作业质量,使配电网形成良好的运行模式,发现问题及时解决,不断完善监管体系。还要根据规模大小和配电网覆盖面的.范围,制定包括值班巡查制度、线路运行管理制度、设备缺陷管理、施工质量管理以及设备检修等在内部管理制度,结合实际情况,将制度规定的岗位职责、绩效考核、奖惩办法、权力分配等进行详细论述,为管理者更好地对员工工作和设备运行的管理提供可以参照的法规。

2、对网架结构进行科学的规划

首先,要对低压线路进行科学的规划,要确保建立在与负荷水平相互适应的网架结构,这样才能确保线路以及设备不会出现过负荷的运行现象,可以采用低压线路区域的供电模式,根据实际的电源位置对线路上的负荷进行科学的分布,将线路分为若干个供电区域,这样可以减少过负荷运行情况的发生,而且,还降低了跨区域供电的现象,降低低压线路的维护量,有效的提高供电的质量。其次,要熟悉低压线路的运行情况,尤其是在长期处在输送电的线路,要加强对这些线路的维护,是否经常出现过负荷运行,是否有线路出现老化的现象,一旦发现线路存在老化的问题,要及时对其进行更换,避免线路老化引起的故障而影响低压线路的供电质量。最后,要根据地区的用电情况对线路进行有效的维修,在我国社会经济的不断发展下,家用电器的数量不断的增加,用电量也不断的增大,因此,要根据地区的实际用电需求适当的更换低压线路,要保证线路供电能够满足供电的高峰期,避免用电量过大对线路造成影响。

3、提高低压线路的防雷措施

首先,要提高低压线路绝缘子的耐雷水平,雷击事件一般多发生在线路的绝缘子上,如果绝缘子的耐雷水平偏低的话,在雷击的影响下就会发生闪络的现象,从而引起线路的故障,因此,为了降低雷击对线路的影响,必须要提高低压线路绝缘子的耐雷水平。其次,要加强对低压线路接地网的检测和维护,要根据季节、气候、区域来制定合理的检测维修计划,定期对接地网进行检测,确保接地网的电阻值在规定范围内。再次,要加强与地区气象部门之间的联系,要及时获取气象信息,一旦得知将有恶劣天气,可以在来临之前做好防范措施,最大限度的降低低压线路受到气象灾害而产生的损失,而且,在一定程度上还可以避免雷击事件对人身造成的伤害,进一步提高低压线路运行的可靠性,降低故障的发生率。最后,针对低压线路的防雷技术来说,可以引进国内外高新技术、高端设备来提高线路的防雷水平,降低雷击对低压线路运行造成的影响。例如,针对低压线路的防雷措施可以引进自动化控制系统,能够有效的防止低压线路出现雷击故障。

4、加强对线路的巡视工作

低压线路上包括多种多样的电力设备,电力设备会受到环境、天气等因素的影响而引起故障,对线路运行的安全性、可靠性也会带来一定的影响,因此,要加强对线路的巡视工作。首先,要严格按照低压线路巡视的规范流程要求,定期对线路进行巡视,要及时对线路上设备的运行情况进行及时的了解,一旦发现设备存在运行问题或潜在的运行风险,要及时对其进行有效的处理,避免设备的故障对线路运行造成一定的影响。其次,对低压线路巡视的过程中,要严格检查线路上设备的运行环境是否存在障碍物,如果有障碍的话,要及时清除障碍,避免影响低压线路的正常运行,而且,还要巡视设备运行状态、环境,是否受到污染,如果设备周围存在杂物或被污染的话,要及时清理,将这些潜在的安全隐患消除掉。最后,加强对线路设备的投入,如果在巡视的过程中发现设备出现老化或已经存在潜在的故障现状,要及时更换设备,另外,要根据低压线路运行的具体情况来引进先进的设备,提高低压线路运行的安全性和可靠性。

5、运行检修管理

电力系统设备一般为成本高昂的大型设备,所以要在日常使用中合理使用,定期维护保养,减少设备故障发生率,延长设备的使用时间。对配电线路和设备制定定期检测维修制度,加强设备运行管理,保证电力设备安全可靠运行。对于设备的检修工作要遵循“以检为主,以修为辅”的原则,加强设备的检修、维护工作,减少设备大修次数,确保供电稳定。在检修时要采用现代化的先进维修设备和工艺,确保检修工作的质量,延长供电线路设备的使用寿命。

结束语

配电线路是庞大电力系统中的重要组成部分,要确保配电线路保持安全稳定的运行状态,这不仅是电力系统正常运作的要求也是配电线路工作人员的工作重点。这就要求工作人员在实践中不断总结经验,认真分析故障原因,加强科学管理,通过科学管理、提升设备质量、提高人员技能水平等措施,为配电网的安全可靠运行打下坚实的基础。

篇6:低压配电系统配电线路宜设置漏电电流动作保护的设备有哪些?

低压配电系统配电线路宜设置漏电电流动作保护的设备有哪些?

(1)手握式及移动式用电设备,

(2)建筑施工工地的用电设备,

(3)环境特别恶劣或潮湿场所(如锅炉房、食堂、地下室及浴室)的电气设备。

(4)住宅建筑每户的进线开关或插座专用回路。

(5)由TT系统供电的用电设备。

(6)与人体直接接触的医疗电气设备(但急救和手术用电设备等除外)。

篇7:浅谈漏电保护开关在低压配电网络中的应用论文

浅谈漏电保护开关在低压配电网络中的应用论文

摘要:长期以来,农村电网,特别是农村低压电网,网架结构薄弱,年久失修,倒杆断线、烧配电变压器事故频发,供电的安全、经济、可靠性很差,人身触电伤亡事件也时有发生。

关键词:漏电开关 配电网络 应用

1、前言

漏电保护开关在我国是从80年代新兴发展的一种保护电器。由于该保护开关体积小、造价低、便于维护和安装,能有效地保护人身及设备的安全等特点,引起了广大电力同行和用户的关注和青睐,掀起了一场低压配电网络安全保护的技术革命。本文试图通过我局在农网改造过程中对漏电保护开关的应用分析,探讨漏电保护开关的正确安装、维护和使用方法,以供同行及用户参考。

2、漏电保护开关在农网改造中的推广应用

长期以来,农村电网,特别是农村低压电网,网架结构薄弱,年久失修,倒杆断线、烧配电变压器事故频发,供电的安全、经济、可靠性很差,人身触电伤亡事件也时有发生。3月以来,延安市一区两县(宝塔区、洛川县、黄陵县)农村电网建设改造工程被列为国家、陕西省电力公司的示范工程,半年时间里完成全部工程投资1.7亿元。这次改造中,安装配电台区低压漏电保护开关2138台,家用漏电保护开关99058台,达到了台区有总保、户户有家保,健全了低压网络的防护体系,基本上杜绝了人身触电伤亡及设备损坏等事故的`发生。例如:延安市宝塔区南泥湾乡桃宝峪村村民常宝玉,在给牛棚接灯时,不慎触及带电导线,事后他发现家中新安装的家保器动作跳闸,断开了电源,保全了性命,他逢人便说:“是家保器救了咱的命。”像类似事件,在我市广大农村不胜枚举,不少农民把漏电保护器视作“保命器”,据不完全统计:我局所辖一区两县从19下半年未发生人身触电伤亡及烧配电变压器等事故,年减少直接经济损失达100万元以上。

由此可见,漏电保护开关的安装应用既有可观的经济效益,又有其广泛的社会效益,这是因为:

(1)建立了一个确保人身触电伤亡的保护屏障,基本上杜绝了人身触电伤亡事故的发生。

(2)能有效地切断漏电电流、短路电流等引起的火灾,烧配电变压器等设备事故的发生。

(3)促进了农村电气化水平的发展和提高。漏电保护开关的应用对线路及家户室内布线提出了较高的要求,经过改造的户内、外低压线路更有利于家用电器的使用和农村电力市场的发展壮大。

(4)减少了私拉乱接、违章用电等现象引起的不明损失电量,提高了经济效益。

(5)促进了农村用电管理水平的提高。

3、漏电保护开关在低压网络中的配置方式初探

我市农村低压电网线长、点多、面广,受复杂地理位置限制,低压电网布局极为困难,针对农村低压电网事故多发生在低压分支线、下户线及室内配线这一特点,笔者认为,农村低压电网宜采用三级保护,即:

(1)一级低压总保。该保护安装于配电变压器出线侧,主要保护低压主干线,并作为二、三级保护的后备保护。

(2)二级低压分保。该保护介于一、三级保护中间,主要保护低压各分支线、下户线,并作为三级保护的后备保护。

(3)三级低压家保。该保护安装于电表出线侧,主要用于室内配线及家用电器的保护。

以上三级漏电保护的动作电流及动作时间应协调配合,合理计算。

漏电保护开关的选择主要由所保护的范围及人体安全电流来决定,一级保护一般漏电动作电流宜选择在100mA以上,动作时间0.5s以上。

二级保护一般选择动作电流在50~100mA,动作时间0.3~0.5s.

三级保护一般选择动作电流在10~30mA,动作时间为0.1s左右。

目前我局所辖范围大多采用一、三两级保护,其缺点主要是一组家保越级,造成总保动作,使低压主干线停电频繁。

4、存在的问题及建议

综上所述,漏电保护开关在人身安全、设备安全、电气火灾等多方面起到了积极的保障作用,同时在安装、使用的过程中仍存在不少问题及误区。

误区一:把漏电保护开关当作万能的“保命器”。在农村,一些人一旦安装了保护开关,认为不论怎么摆弄电器,总不会有性命之忧,可以随意私拉乱接了,其实这是十分危险的想法。现运行的漏电开关有一定的保护死区,一是由于触电保护与漏电保护混合运行,在灵敏度及保护范围上难以顾全;二是漏电器生产厂家众多,鱼目混杂,个别生产厂家产品质量低劣,使不少漏电器不能正确可靠动作;三是不少漏电器(如鉴相式),不能作相与相、相与零之间的触电保护。

误区二:有了漏电保护开关可以不进行接地保护。

误区三:为了省事,索性退出保护开关。在农村不少地方仍存在私拉乱接现象,户外线路虽经改造,而户内配线则混乱不堪,加之鼠害等影响,导致了漏电开关频繁动作。一些人为了图方便,私自退出漏电开关,其实这也是非常危险的做法。

问题一:由于总、分、家保之间的配置方式不当,导致低压线路频繁跳闸,不少地方的低压网络时常处于停电状态,不得不退出保护。

问题二:大多数漏电保护器属无法调整的一次性产品,加之目前还没有对此进行安装前、运行中的检测。即便试验,也只能是进行按钮式的简单动作试验,因此,大大影响了保护的可靠动作率。

问题三:接线错误时有发生,由于个别安装人员业务素质低而导致错误接线,轻则保护投不上,重则烧毁保护器或使保护造成假运行状态,危及安全。

对此,笔者建议对漏电保护开关的安装使用应加强以下管理:

(1)广泛深入地开展农村安全用电宣传教育活动,普及漏电保护开关有关知识,让广大用户正确认识和使用漏电保护器。

(2)加强线路和设备的运行管理,提高线路及设备的绝缘水平。

(3)科学合理的进行各级保护配置,力求各级保护在其保护范围内可靠动作。

(4)研制并配置保护器现场校验装置,坚持对保护器作定期试验。

(5)推广应用漏电保护开关方面的新技术、新产品,力求在一个区域内使用统一产品。

(6)以台区为单位建立漏电保护器运行台帐。

(7)在县一级供电部门应有专人负责此项工作的推广应用及安装检修培训等技术工作,建立必要的工作制度。

(8)漏电开关在保护范围内发生电击伤亡事故,应迅速找电工处理以免扩大事故范围,同时,应检查漏电保护器动作情况,保护现场、分析原因、配合保险、供电、司法等部门作进一步的调查和勘察。

(9)应建立和规范漏电保护开关制造、安装、使用及维护等方面的规程和制度,确保这一保护装置发挥其应有的作用。

篇8:10kV配电线路保护的整定计算论文

110kV配电线路的特点

10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kVA,有的线路上却有几千kVA的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。

2 问题的提出

对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护“四性”的要求。

3 整定计算方案

我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。

(1)电流速断保护:

由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。

①按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。

Idzl=Kk×Id2max

式中Idzl-速断一次值

Kk-可靠系数,取1.5

Id2max-线路上最大配变二次侧最大短路电流

②当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。

Ik=Kn×(Igl-Ie)

式中Idzl-速断一次值

Kn-主变电压比,对于35/10降压变压器为3.33

Igl-变电所中各主变的最小过流值(一次值)

Ie-为相应主变的额定电流一次值

③特殊线路的处理:

a.线路很短,最小方式时无保护区;或下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。

b.当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。

c.当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大短路电流整定,可靠系数取1.3~1.5。此种情况一般能同时保证选择性与灵敏性。

d.当速断定值较小或与负荷电流相差不大时,应校验速断定值躲过励磁涌流的能力,且必须躲过励磁涌流。

④灵敏度校验。按最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护保护线路全长。

Idmim(15%)/Idzl≥1

式中Idmim(15%)-线路15%处的最小短路电流

Idzl-速断整定值

(2)过电流保护:

按下列两种情况整定,取较大值。

①按躲过线路最大负荷电流整定。随着调度自动化水平的提高,精确掌握每条线路的最大负荷电流成为可能,也变得方便。此方法应考虑负荷的自启动系数、保护可靠系数及继电器的返回系数。为了计算方便,将此三项合并为综合系数KZ。

即:KZ=KK×Kzp/Kf

式中KZ-综合系数

KK-可靠系数,取1.1~1.2

Izp-负荷自启动系数,取1~3

Kf-返回系数,取0.85

微机保护可根据其提供的技术参数选择。而过流定值按下式选择:

Idzl=KZ×Ifhmax

式中Idzl-过流一次值

Kz-综合系数,取1.7~5,负荷电流较小或线路有启动电流较大的负荷(如大电动机)时,取较大系数,反之取较小系数

Ifhmax-线路最大负荷电流,具体计算时,可利用自动化设备采集最大负荷电流

②按躲过线路上配变的励磁涌流整定。变压器的励磁涌流一般为额定电流的'4~6倍。变压器容量大时,涌流也大。由于重合闸装置的后加速特性(10kV线路一般采用后加速),如果过流值不躲过励磁涌流,将使线路送电时或重合闸重合时无法成功。因此,重合闸线路,需躲过励磁涌流。由于配电线路负荷的分散性,决定了线路总励磁涌流将小于同容量的单台变压器的励磁涌流。因此,在实际整定计算中,励磁涌流系数可适当降低。

式中Idzl-过流一次值

Kcl-线路励磁涌流系数,取1~5,线路变压器总容量较少或配变较大时,取较大值

Sez-线路配变总容量

Ue-线路额定电压,此处为10kV

③特殊情况的处理:

a.线路较短,配变总容量较少时,因为满足灵敏度要求不成问题,Kz或Klc应选较大的系数。

b.当线路较长,过流近后备灵敏度不够时(如15km以上线路),可采用复压闭锁过流或低压闭锁过流保护,此时负序电压取0.06Ue,低电压取0.6~0.7Ue,动作电流按正常最大负荷电流整定,只考虑可靠系数及返回系数。当保护无法改动时,应在线路中段加装跌落式熔断器,最终解决办法是网络调整,使10kV线路长度满足规程要求。

c.当远后备灵敏度不够时(如配变为5~10kVA,或线路极长),由于每台配变高压侧均有跌落式熔断器,因此可不予考虑。

d.当因躲过励磁涌流而使过流定值偏大,而导致保护灵敏度不够时,可考虑将过流定值降低,而将重合闸后加速退出(因10kV线路多为末级保护,过流动作时限一般为0.3s,此段时限也是允许的)。

④灵敏度校验:

近后备按最小运行方式下线路末端故障,灵敏度大于等于1.5;远后备灵敏度可选择线路最末端的较小配变二次侧故障,接最小方式校验,灵敏度大于或等于1.2。

Km1=Idmin1/Idzl≥1.25

Km2=Idmin2/Idzl≥1.2

式中Idmin1-线路末端最小短路电流

Idmin2-线路末端较小配变二次侧最小短路电流

Idzl-过流整定值

4 重合闸

10kV配电线路一般采用后加速的三相一次重合闸,由于安装于末级保护上,所以不需要与其他保护配合。重合闸所考虑的主要为重合闸的重合成功率及缩短重合停电时间,以使用户负荷尽量少受影响。

重合闸的成功率主要决定于电弧熄灭时间、外力造成故障时的短路物体滞空时间(如:树木等)。电弧熄灭时间一般小于0.5s,但短路物体滞空时间往往较长。因此,对重合闸重合的连续性,重合闸时间采用0.8~1.5s;农村线路,负荷多为照明及不长期运行的小型电动机等负荷,供电可靠性要求较低,短时停电不会造成很大的损失。为保证重合闸的成功率,一般采用2.0s的重合闸时间。实践证明,将重合闸时间由0.8s延长到2.0s,将使重合闸成功率由40%以下提高到60%左右。

5 有关保护选型

10kV线路保护装置的配置虽然较简单,但由于线路的复杂性和负荷的多变性,保护装置的选型还是值得重视的。根据诸城电网保护配置情况及运行经验,建议在新建变电所中应采用保护配置全面的微机保护。微机保护在具备电流速断、过电流及重合闸的基础上,还应具备低压(或复压)闭锁、时限速断等功能,以适应线路及负荷变化对保护方式的不同要求。

篇9:供电线路距离保护的意义与优势论文

距离保护装置可以准确迅速地解决近距离短路故障,避免供电系统出现越级跳闸等事故,同时还可以有效的解决后端线路中出现的线路故障事故,从而避免由于失误导致的错误操作,最终起到保护电流作用,因此,距离保护装置在供电线路中具有的应用价值非常广泛。

为了确保距离保护装置的使用可靠性,通常保护装置可以分为以下几个部分。第一个是测量部分,这个部分主要是用来测量短路故障点的距离,并且判定短路故障点的方向。第二部分是启动部分,这个部分是用于判别系统的故障状态,当出现短路故障时,可以瞬时启动距离保护装置,其中一些保护装置的启动部分可以兼作后备保护作用。第三部分是振荡闭锁部分,这个部分是用来避免系统在振荡情况下而产生距离保护装置错误动作,采用二次电压的回路断线闭锁部分,可以预防电压互感器在回路断线情况下,因阻抗继电器操作而出现的距离保护失误操作。最后一个部分是供电设备的逻辑部分,通过这个部分可以确保保护装置发挥应有的性能,并且建立距离保护的各段时限。

篇10:供电线路距离保护的意义与优势论文

1距离保护装置的应用意义分析

距离保护是短路点和保护装置点的阻抗力决定,跟电压电流绝对值没有关联,当电流比较大的时候,母线残余的电压会相应比较高,而电流较小时,母线残余的电压就比较低,实际上这两者之间存在着固定的比例关系。相比较于电流电压的保护装置,距离保护装置的第一、第二以及第三段保护与三段电流的保护作用非常相似。短路故障如果发生于第一段范围内,阻抗继电器可以瞬间采取保护动作,继电器是动作时间比较固定,跟电流的速断保护原则几乎一样,只是继电器是按照距离进行配合,并且不会受到运行方式的干扰,从而可以扩大保护范围,而且保持固定不变;而电流的速断保护装置需要电流的配合,并且容易受到运行方式的干扰,保护范围相对小而变化幅度较大。如果短路故障发生于较远的距离范围内,即当短路范围处于第二范围时,阻抗继电器可以建立第二阶段的延时继电保护动作,延时之后会促使机构跳闸。最后在线路末端距离保护装置中,在第三段时间里,继电器不会受到距离元件的运行干扰,因此在第三段发生的短路故障,工作情况以及工作方向与过电流保护方式十分相像。

2供电设备距离保护装置的优势

距离保护装置的工作特点展现了距离保护装置的使用重要性和优越性。距离保护也就是阻抗保护,利用阶梯型时限特征,将保护时限分成三个阶段,在第一阶段中的距离保护装置是采取瞬时动作进行保护,第一段是继电器自身固有的动作时间,不用进行延时,通常在整条线路的近前端距离发挥作用。第二段距离保护主要是为了解决中后端的线路中所出现的短路故障。这个阶段保护工作原理与电流速断相近,保护范围与第一第二阶段范围互相配合。动作时间上比第一阶段长,通常会多出0.5s的时间间隔。末端保护装置中,没有设立距离元件,从而有利于增强保护动作的选择性。第三段时间将比第二段的时间还要高,以确保线路的相应阶段发生故障时,对元件的`保护工作只在相应阶段进行。

距离保护装置在实践中的应用原理分析

供电线路在正常工作的情况下,距离保护安装点处的电压就是系统的额定电压即Ue,线路中的负荷电流就是If,而短路故障发生时,母线上的残余电压为Uc,相比较正常工作状态下的电压要低出很多,线路中电流通常是短路电流即If要比正常的负荷电流高很多。因此,可以发现,线路故障保护的安装点处电压与电流比值应当为Uc/I,当正常状态与故障状态相比变化很大时,只要比较单纯的电流值或者电压值就可以清楚分辨故障状态与正常状态。

正常状态情况下,Ue与If的比值基本上表现为负荷的阻抗值,而短路的状态下,Uc与Id的比值则反映的是保护点处到短路故障点之间的阻抗值,阻抗值的大小,反映了这条线路的长度。因此,短路状态下的阻抗值可以间接反映出短路故障点到距离保护装置安装点之间的距离。由于短路故障发生时,电压会降低,电流会增大,所以距离保护装置范围内,阻抗继电器测量出的阻抗U/I值就会明显减少。如果阻抗U/I值比保护装置整定阻抗值要小时,保护动作就会触动开关脱扣装置,停止对发生故障的线路进行供电。因此,距离保护也可以称为阻抗保护。

如果线路上的点d处发生短路故障,阻抗继电器的阻抗值测量公式为下列公式:Zd等于Ud与Id的比值。分析这个公式,可以得出,当没有短路故障发生时,短路故障点越靠近距离保护装置点,所测量出的阻抗值就会越小,动作时间也将越快;如果短路故障点与距离保护装置处的距离较远,所测量出的阻抗之相应也会较大,动作时间也就较长。因此,可以利用阻抗保护自身的时限特征,在相应的距离保护范围之内采取保护动作,从而避免在其它范围内发生失误操作。(本文作者:贺强、刘国芳 单位:包头供电局石拐分局、包头供电局变电一处)

篇11:通畅信息对高压输电线路的保护研究论文

通畅信息对高压输电线路的保护研究论文

1河道非法采砂对输电线路的影响

输电线路分布广泛,地处旷野,跨越各种江河湖泊,长期处于露天之下运行,经常受到外部环境的影响。随着投运的输电线路不断增长以及快速发展的社会经济建设、城市化进程和高速铁路、高速公路等各种施工建设项目带来的隐患增多,输电线路遭受外力破坏的风险也随之增大。近几年的运行数据表明,除了雷击以外,外力破坏故障已经成为输电线路停运的主要原因。例如湖北省电力公司2014年220kV及以上输电线路因外力破坏跳闸54次,占跳闸总数的42.8%,严重威胁电网的安全稳定运行。在各种外破行为类型中,河道非法采砂是造成线路外破事故的主要原因之一。

河道非法采砂主要是由于采砂施工单位未经相关管理部门许可,在输电线路周围擅自进行采砂作业,造成线路设施损坏或故障,主要包括采砂施工作业过程中吊臂误碰导线导致线路跳闸、砂石堆放太高不满足与导线间的安全距离、采砂机肆意开采损伤基础等。河道非法采砂容易造成线路停运、杆塔基础外露、倒塔断线等。

2河道非法采砂导致线路危害的主要原因

2.1利益驱使

随着社会经济飞速发展,城市规模不断扩大,建筑市场对砂石资源需求量日益增大,砂石价格因此不断攀升。为获取暴利,不少采砂业主无证非法开采,严重忽视周边线路运行情况,随意堆放砂石,吊车施工时不注意与导线的距离,最终造成线路跳闸、设备损坏、人员伤亡等情况。此外,一些有证采砂业主为了获取更高的经济利益,在采砂施工过程中,不顾区域限制和周边线路环境,肆意开采,加大了线路跳闸概率。

2.2缺乏电力设施保护意识

河道非法采砂一般在较为偏远的江河地区进行,施工作业人员往往缺乏基本的高压输电线路防外破知识,不知道采砂吊臂应与高压输电线路保持多远的距离,同时对线路附近存在的危险点认识不足,更缺少必要的安全保护措施。而线路运行单位在维护线路时,由于地理位置偏远容易出现宣传工作不到位、采砂区域各类物防、技防措施不完备等情况,造成施工作业方缺乏足够的电力设施保护知识和自我保护意识,最终酿成线路停运、设备损坏和人员伤亡等后果。

3防止河道非法采砂的措施

根据河道非法采砂作业的特点,采砂业主及施工人员的心理,结合线路运行情况,可采取以下措施防治河道非法采砂作业:

第一,在线路规划选线阶段,应及时向各选线区段的地方政府的规划部门进行深入调研,了解未来3~5年内辖区河道采砂施工情况;同时应尽量避免线路经过江河湖泊和采砂施工区域,减少潜在的危险源,避开现有重要输电通道线路,加大两条相邻线路中心距离。

第二,在线路设计上,对于线路跨越河流时,应收集通航船舶及其附属物的最大高度,并在跨越距离上留出一定裕量,防止船舶在线路下方作业及行驶时触碰导线,造成线路跳闸事故。

第三,建立健全警企联防工作机制,成立电力警务室,担负起督导、指挥、协调打击盗窃破坏电力设施违法犯罪活动的工作任务,搭建起保护电力设施安全和企业治安环境的有效平台,查处、惩治河道非法采砂破坏等危害电力设施安全的违法犯罪行为。

第四,涉及电力设施保护区内严重影响输电线路安全运行的采砂施工等情况,应立即汇报给当地电力警务室,由电力警务室出警处置;对于存在重大安全隐患的,电力警务室可以报请市公安局进行办理。

第五,给输电线路造成重大损失的责任方,电力警务室协同辖区派出所依法对责任方进行传唤,并依据地方物价局价格认定中心出具的价格报告,对责任方进行立案查处。责任方态度认识较好的`,与供电部门签订协议书,给予一定经济补偿;责任方态度恶劣的,依法进行拘留或逮捕。

第六,加大输电线路通道非法采砂安全隐患摸底排查,与政府相关部门开展整治非法采砂专项联合执法工作,加大力度打击因非法采砂造成电网事故的违法行为,追究其经济赔偿责任和刑事责任。

第七,加强与辖区内采砂施工单位的联系,了解清楚采砂施工计划、施工范围、进度要求等,然后根据施工计划、范围和进度提前制定应对防范措施。

第八,强化线路保护区河道采砂施工作业的监督管理,采取“以疏为主、以堵为辅、主动服务”的策略,主动了解情况,及时提供现场电力安全指导,协助做好预控措施。

第九,对线路保护区内的河道采砂作业区域展开特殊巡视,安排专人进行蹲守,开展现场施工安全把关,建立隐患信息点档案,制定各项应急预案,同时将现场情况上报调度,做好线路负荷转移预案,增强线路运行管控能力。

第十,综合考虑汛期、丰水季节特点及跨越点安全距离实际情况,按照相关标准规程设立永久性拦河线、限高架、安全警示标志(牌)等,标明电力线路下方穿越物体的限制高度和要求。

第十一,针对线路防采砂外破工作,线路运检单位要主动联系质量技术监督局、建设局等政府相关职能部门,收集沿线施工计划信息,及时组织人员开展现场勘察核实,对可能危及输电线路安全运行的外力破坏隐患,建立档案并定期持续观察;利用电力行政审批度、政企联动机制、内部会签制度开展吊车、铲车等移动作业车专题防外破信息收集、宣贯及预控工作;针对固定施工场所,推广使用保护桩、限高架(网)、限位设施、视频监视、激光报警等物防、技防措施;针对移动(流动)施工场所,采取在防护区内临时安插警示牌或警示旗、铺警示带、安装警示护栏等安全保护措施,并结合线路地段外破缺陷、隐患及历年线路运行经验,有针对性地开展专题宣传及状态性巡视工作;有条件时,可利用近电报警装置、视频在线监控装置、专职护线队巡防等技防、人防措施提高关键地段、关键时段以及重要线路通道的外破防控能力。其中,有专职护线力量的,要确保在5~11月施工密集期,重点区段通道巡视每天不少于1次,护线员每日巡视不少于2次。

目前,随着经济建设的需要,市场对砂石的需求量日益增高,河道采砂行业监管压力日益增大,肆意开采,随意堆沙现象日益严重,因此对于输电线路辖区内防止河道非法采砂外破的形势异常严峻。要改变这种现状,线路运行单位需要从线路设计、施工、线路运维、宣传培训、政企沟通、联合执法、物防技防等多个方面着手,以预防为主,以梳理为主,多措并举,从而减少外破事件的发生概率,提高线路运行的可靠性和稳定性,改善电网运行环境。

相关专题 线路论文